Linear Approximation and Differentials

A curve is very close to its tangent close to the point of tangency (touching).

We can use this for approximating values of the function. . .

Linear Approximation and Differentials

Why approximate values of a function using a tangent?

- might be easy to compute $f(a)$ and $f^{\prime}(a)$,
- but difficult to compute values $f(x)$ with x near a

We use the tangent line at $(a, f(a))$ to approximate $f(x)$ when x is close to a.

The tangent at $(a, f(a))$ is:

$$
L(x)=f(a)+f^{\prime}(a) \cdot(x-a)
$$

This function is called linearization of f at a.
When x is close to a, we approximate $f(x)$ by:

$$
f(x) \approx f(a)+f^{\prime}(a) \cdot(x-a)
$$

This is called

- linear approximation of f at a, or
- tangent line approximation of f at a.

Linear Approximation and Differentials

Find the linearization of $f(x)=\sqrt{x+3}$ at 1 and use it to approximate $\sqrt{3.98}$.

We have:

$$
\begin{aligned}
f(1) & =\sqrt{3+1}=2 \\
f^{\prime}(x) & =\frac{1}{2 \sqrt{x+3}}
\end{aligned}
$$

$$
f^{\prime}(1)=\frac{1}{2 \sqrt{1+3}}=\frac{1}{4}
$$

Thus the linearization of f at 1 is:

$$
L(x)=2+\frac{1}{4}(x-1)
$$

Thus for x close to 1 we approximate $f(x)$ by:

$$
f(x)=\sqrt{x+3} \approx 2+\frac{1}{4}(x-1)
$$

In particular:

$$
\sqrt{3.98}=\sqrt{0.98+3} \approx 2+\frac{1}{4}(0.98-1)=2-0.005=1.995
$$

Linear Approximation and Differentials

The linear approximation is close to the curve when x is near 1 .

Linear Approximation and Differentials

What is the linear approximation of $f(x)=\sin x$ at 0 ?
Use it to approximate $\sin 0.01$.
We have:

$$
\begin{aligned}
f(0) & =\sin 0=0 \\
f^{\prime}(x) & =\cos x
\end{aligned} \quad f^{\prime}(0)=1
$$

Thus the linear approximation of $\sin x$ at 0 is:

$$
L(x)=0+1(x-0)=x
$$

We use this to approximate $\sin 0.01$:

$$
\sin 0.01 \approx L(0.01)=0.01
$$

Linear Approximation and Differentials

What is the linear approximation of $f(x)=\cos x$ at 0 ?
Use it to approximate cos 0.01 .
We have:

$$
\begin{aligned}
f(0) & =\cos 0=1 \\
f^{\prime}(x) & =-\sin x \quad f^{\prime}(0)=0
\end{aligned}
$$

Thus the linear approximation of $\cos x$ at 0 is:

$$
L(x)=1+0(x-0)=1
$$

We use this to approximate $\cos 0.01$:

$$
\cos 0.01 \approx L(0.01)=1
$$

Approximations for sin and cos are often applied in physics (e.g. optics).

Linear Approximation and Differentials

Final Exam 2005

Use differential approximation, or the linearization method, to approximate $\sqrt[4]{15.5}$.

We have $f(x)=\sqrt[4]{x}$.
We need to choose where to compute the linearization: $a=16$.

$$
\begin{aligned}
& f(16)=2 \\
& f^{\prime}(x)=\frac{1}{4} x^{-\frac{3}{4}} \quad f^{\prime}(16)=\frac{1}{4} 16^{-\frac{3}{4}}=\frac{1}{4} \sqrt[4]{16^{-3}}=\frac{1}{4} \cdot \frac{1}{8}=\frac{1}{32}
\end{aligned}
$$

The linearization of f at 16 is:

$$
L(x)=2+\frac{1}{32}(x-16)
$$

Then the approximation of $\sqrt[4]{15.5}$ is:

$$
\sqrt[4]{15.5} \approx L(15.5)=2+\frac{1}{32}(15.5-16)=2-\frac{1}{64}=\frac{127}{64}
$$

Linear Approximation and Differentials

Final Exam 2004

Use the linearization method to approximate $(1.98)^{4}$.
We have $f(x)=x^{4}$.
We need to choose where to compute the linearization: $a=2$.

$$
\begin{aligned}
f(2) & =16 \\
f^{\prime}(x) & =4 x^{3}
\end{aligned} \quad f^{\prime}(2)=4 \cdot 2^{3}=4 \cdot 8=32
$$

The linearization of f at 2 is:

$$
L(x)=16+32(x-2)
$$

Then the approximation of $(1.98)^{4}$ is:

$$
\begin{aligned}
(1.98)^{4} \approx L(1.98) & =16+32(1.98-2)=16+32(-0.02) \\
& =16+32\left(-\frac{1}{50}\right)=16-\frac{16}{25}=\frac{16 \cdot 24}{25}
\end{aligned}
$$

Linear Approximation and Differentials

Final Exam 2003 (Spring)

Use differentials or the linearization approximation method to approximate $\ln (0.9)$.

We have $f(x)=\ln x$.
We need to choose where to compute the linearization: $a=1$.

$$
\begin{aligned}
f(1) & =0 \\
f^{\prime}(x) & =\frac{1}{x}
\end{aligned}
$$

The linearization of f at 1 is:

$$
L(x)=0+1(x-1)=x-1
$$

Then the approximation of $\ln (0.9)$ is:

$$
\ln (0.9) \approx L(0.9)=0.9-1=-0.1
$$

Linear Approximation and Differentials

Final Exam 2003 (Fall)

 Use differentials to approximate $\sqrt[3]{999}$.We have $f(x)=\sqrt[3]{x}$.
We choose where to compute the linearization: $a=1000$.

$$
\begin{aligned}
f(1000) & =10 \\
f^{\prime}(x) & =\frac{1}{3} x^{-\frac{2}{3}}=\frac{1}{3(\sqrt[3]{x})^{2}} \quad f^{\prime}(1000)=\frac{1}{3 \cdot 10^{2}}=\frac{1}{300}
\end{aligned}
$$

The linearization of f at 1000 is:

$$
L(x)=10+\frac{1}{300}(x-1000)
$$

Then the approximation of $\sqrt[3]{999}$ is:
$\sqrt[3]{999} \approx L(999)=10+\frac{1}{300}(999-1000)=10-\frac{1}{300}=\frac{2999}{300}$

Linear Approximation and Differentials

The method of linear approximation with differentials:

$$
f^{\prime}(x)=\frac{d y}{d x}
$$

We view $d x$ and $d y$ as variables, then:

$$
d y=f^{\prime}(x) d x
$$

So $d y$ depends on the value of x and $d x$.

- $x=$ point of linearization
- $\Delta x=d x$ is the distance from x
- $d y=$ change of y of tangent
- $\Delta y=$ change of y of curve f

As formulas:

- $d y=f^{\prime}(x) d x$
- $\Delta y=f(x+\Delta x)-f(x)$

