Mean Value Theorem

Rolle's Theorem

Let f be a function satisfying the all of the following:

- f is continuous on $[a, b]$
- f is differentiable on (a, b)
- $f(a)=f(b)$

Then there is a number c in (a, b) such that $f^{\prime}(c)=0$.

Mean Value Theorem

Rolle's Theorem

Let f be a function satisfying the all of the following:

- f is continuous on $[a, b]$
- f is differentiable on (a, b)
- $f(a)=f(b)$

Then there is a number c in (a, b) such that $f^{\prime}(c)=0$.

Proof.

- If f is constant, then $f^{\prime}(c)=0$ for all c in (a, b).
- If f is not constant, then there is x in (a, b) such that

$$
f(x)>f(a) \quad \text { or } \quad f(x)<f(a)
$$

Assume $f(x)>f(a)$. By the Extreme Value Theorem there is a c in $[a, b]$ such that $f(c)$ is the absolute maximum.

Then c must be in (a, b) and hence is a local maximum. Hence $f^{\prime}(c)=0$ by Fermat's Theorem.

Mean Value Theorem

Rolle's Theorem

Let f be a function satisfying the all of the following:

- f is continuous on $[a, b]$
- f is differentiable on (a, b)
- $f(a)=f(b)$

Then there is a number c in (a, b) such that $f^{\prime}(c)=0$.

Let $s(t)$ be the position of an object after time t. The object is in the same place at time $t=2 s$ and $t=10 \mathrm{~s}$.
What does Rolle's Theorem tell us about the object?
It tells that there is a time c between $2 s$ and $10 s$ such that the

$$
s^{\prime}(t)=0
$$

that is, the velocity of the object at time c is 0.

Mean Value Theorem

Rolle's Theorem

Let f be a function satisfying the all of the following:

- f is continuous on $[a, b]$
- f is differentiable on (a, b)
- $f(a)=f(b)$

Then there is a number c in (a, b) such that $f^{\prime}(c)=0$.
Show that the function f is one-to-one (never takes the same value twice):

$$
f(x)=x^{3}+x-1
$$

Assume there would be $x_{1}<x_{2}$ such that $f\left(x_{1}\right)=f\left(x_{2}\right)$.
The function f is continuous and differentiable on $\left[x_{1}, x_{2}\right]$.
By Rolle's Theorem there exists c in $\left(x_{1}, x_{2}\right)$ with $f^{\prime}(c)=0$.
This is a contradiction since $f^{\prime}(x)=3 x^{2}+1 \geq 1$ for all x. There no $x_{1}<x_{2}$ such that $f\left(x_{1}\right)=f\left(x_{2}\right)$. Thus f is one-to-one.

Mean Value Theorem

Mean Value Theorem

Let f be a function satisfying the all of the following:

- f is continuous on $[a, b]$
- f is differentiable on (a, b)

Then there is a number c in (a, b) such that

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a} \text { this is the slope from }(a, f(a)) \text { to }(b, f(b))
$$

Mean Value Theorem

Proof of the Mean Value Theorem

Let f be a function satisfying the all of the following:

- f is continuous on $[a, b]$
- f is differentiable on (a, b)

Let $L=m x+n$ be the line through $(a, f(a))$ and $(b, f(b))$.
Define $g=f-L$. Then $g(a)=0$ and $g(b)=0$.
By Rolle's Theorem there is c in (a, b) such that $g^{\prime}(c)=0$.
Since $f=g+L$ we get $f^{\prime}(c)=g^{\prime}(c)+m=m=\frac{f(b)-f(a)}{b-a}$.

Mean Value Theorem

Mean Value Theorem

Let f be a function satisfying the all of the following:

- f is continuous on $[a, b] \rightarrow f$ is differentiable on (a, b)

Then there is a number c in (a, b) such that $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$.
Consider the function

$$
f(x)=x^{3}-x
$$

on the interval $[a, b]$ with $a=0$ and $b=2$.
This is a polynomial, thus continuous and differentiable on $[0,2]$.
By the Mean Value Theorem, there is a c in $(0,2)$ such that

$$
f^{\prime}(c)=\frac{f(2)-f(0)}{2-0}=\frac{6}{2}=3
$$

Indeed, we can find such a c, namely: $f^{\prime}\left(\frac{2}{\sqrt{3}}\right)=3$.

Mean Value Theorem

Mean Value Theorem

Let f be a function satisfying the all of the following:

- f is continuous on $[a, b] \rightarrow f$ is differentiable on (a, b)

Then there is a number c in (a, b) such that $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$.
Let $s(t)$ be the position of an object after time t.
Then the average velocity between time $t=a$ and $t=b$ is:

$$
\frac{s(b)-s(a)}{b-a}
$$

What does the Mean Value Theorem tell us?
It states that there is a time c between a and b such that

$$
f^{\prime}(c)=\frac{s(b)-s(a)}{b-a} \quad, \quad \text { that is }
$$

the instantaneous velocity at c is equal to the average velocity.

Mean Value Theorem

Mean Value Theorem

Let f be a function satisfying the all of the following:

- f is continuous on $[a, b] \rightarrow f$ is differentiable on (a, b)

Then there is a number c in (a, b) such that $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$.

We can interpret the Mean Value Theorem as follows:
There is a number c in the interval (a, b) such that the instantaneous rate of change at c is equal to the average rate of change over the interval $[a, b]$.

Mean Value Theorem

Mean Value Theorem

Let f be a function satisfying the all of the following:
$-f$ is continuous on $[a, b] \rightarrow f$ is differentiable on (a, b)
Then there is a number c in (a, b) such that $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$.
Suppose that $f(0)=-3$ and $f^{\prime}(x) \leq 5$ for all x. How large can $f(2)$ possibly be?
By assumption, f is differentiable, and hence continuous.
By the Mean Value Theorem for the interval [0, 2]:
There exists c in $(0,2)$ such that $f^{\prime}(c)=\frac{f(2)-f(0)}{2-0}=\frac{f(2)+3}{2}$.
We have:

$$
5 \geq f^{\prime}(c)=\frac{f(2)+3}{2} \Longrightarrow 10 \geq f(2)+3 \Longrightarrow 7 \geq f(2)
$$

Thus the largest possible value for $f(2)$ is 7 .

Mean Value Theorem

Mean Value Theorem

Let f be a function satisfying the all of the following:

- f is continuous on $[a, b] \quad f$ is differentiable on (a, b)

Then there is a number c in (a, b) such that $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$.
Important consequences of the Mean Value Theorem are:
If $f^{\prime}(x)=0$ for all x in (a, b) then f is constant on (a, b).
(Proof like the previous example)
If $f^{\prime}(x)=g^{\prime}(x)$ for all x in (a, b) then $f-g$ is constant on (a, b).
(In other words, then $f(x)=g(x)+k$ for a constant k)

Proof.

Let $h=f-g$. Then $h^{\prime}=f^{\prime}-g^{\prime}=0$ on (a, b). Thus h is constant on (a, b).

