## Derivatives and the Shape of a Graph

If $f^{\prime}(x)>0$ on an interval, then $f$ is increasing on that interval.
If $f^{\prime}(x)<0$ on an interval, then $f$ is decreasing on that interval.
Where is $f(x)=3 x^{4}-4 x^{3}-12 x^{2}+5$ increasing/decreasing?

$$
f^{\prime}(x)=12 x^{3}-12 x^{2}-24 x=12 x(x-2)(x+1)
$$

| Interval | $12 x$ | $x-2$ | $x+1$ | $f^{\prime}(x)$ |  |
| :---: | :---: | :---: | :---: | :---: | :--- |
| $x<-1$ | - | - | - | - | decreasing on $(-\infty,-1)$ |
| $-1<x<0$ | - | - | + | + | increasing on $(-1,0)$ |
| $0<x<2$ | + | - | + | - | decreasing on $(0,2)$ |
| $2<x$ | + | + | + | + | increasing on $(2, \infty)$ |



## Derivatives and the Shape of a Graph

Recall Fermat's Theorem
If $f$ has a local extremum at $c$, then $c$ is a critical number.

But not ever critical number is an extremum. We need a test!

## Derivatives and the Shape of a Graph

## First Derivative Test

Suppose that $c$ is a critical number of a continuous function $f$.

- If $f^{\prime}$ changes the sign from positive to negative, then $f$ has a local maximum at $c$.
- If $f^{\prime}$ changes the sign from negative to positive, then $f$ has a local minimum at $c$.
- If $f^{\prime}$ does not change sign at $c$, then $f$ has no local extremum at $c$.





## Derivatives and the Shape of a Graph

What are the local extrema of $f(x)=3 x^{4}-4 x^{3}-12 x^{2}+5$ ?

$$
f^{\prime}(x)=12 x(x-2)(x+1)
$$

The critical numbers are: $-1,0$ and 2 .
We have already seen that:

| Interval | $12 x$ | $x-2$ | $x+1$ | $f^{\prime}(x)$ |  |
| :---: | :---: | :---: | :---: | :---: | :--- |
| $x<-1$ | - | - | - | - | decreasing on $(-\infty,-1)$ |
| $-1<x<0$ | - | - | + | + | increasing on $(-1,0)$ |
| $0<x<2$ | + | - | + | - | decreasing on $(0,2)$ |
| $2<x$ | + | + | + | + | increasing on $(2, \infty)$ |

We have:

- $f(-1)=0$ is a local minimum $\quad\left(f^{\prime}\right.$ changes from - to + )
- $f(0)=5$ is a local maximum ( $f^{\prime}$ changes from + to - )
- $f(2)=-27$ is a local minimum ( $f^{\prime}$ changes from - to + )


## Derivatives and the Shape of a Graph

What are the local extrema of $f(x)=3 x^{4}-4 x^{3}-12 x^{2}+5$ ?

$$
f^{\prime}(x)=12 x(x-2)(x+1)
$$

The critical numbers are: $-1,0$ and 2 .


We have:

- $f(-1)=0$ is a local minimum $\quad\left(f^{\prime}\right.$ changes from - to + )
- $f(0)=5$ is a local maximum ( $f^{\prime}$ changes from + to - )
- $f(2)=-27$ is a local minimum $\quad\left(f^{\prime}\right.$ changes from - to + )


## Derivatives and the Shape of a Graph

What are the local extrema of

$$
f(x)=x+2 \sin x \quad 0 \leq x \leq 2 \pi \quad ?
$$

We have

$$
\begin{aligned}
& f^{\prime}(x)=1+2 \cos x \\
& f^{\prime}(x)=0 \Longleftrightarrow \cos x=-\frac{1}{2} \Longleftrightarrow x=\frac{2 \pi}{3} \text { or } x=\frac{4 \pi}{3}
\end{aligned}
$$

As $f^{\prime}$ is defined everywhere these are the only critical numbers.

| Interval | $f^{\prime}(x)$ |  |
| :---: | :---: | :--- |
| $0<x<\frac{2 \pi}{3}$ | + | increasing on $\left(0, \frac{2 \pi}{3}\right)$ |
| $\frac{2 \pi}{3}<x<\frac{4 \pi}{3}$ | - | decreasing on $\left(\frac{2 \pi}{3}, \frac{4 \pi}{3}\right)$ |
| $\frac{4 \pi}{3}<x<2 \pi$ | + | increasing on $\left(\frac{4 \pi}{3}, 2 \pi\right)$ |

As a consequence:

- $f\left(\frac{2 \pi}{3}\right)=\frac{2 \pi}{3}+\sqrt{3}$ is a local maximum ( $f^{\prime}$ from + to - )
- $f\left(\frac{4 \pi}{3}\right)=\frac{4 \pi}{3}-\sqrt{3}$ is a local minimum $\left(f^{\prime}\right.$ from - to +$)$


## Derivatives and the Shape of a Graph

What are the local extrema of

$$
f(x)=x+2 \sin x \quad 0 \leq x \leq 2 \pi \quad ?
$$

We have

$$
\begin{aligned}
& f^{\prime}(x)=1+2 \cos x \\
& f^{\prime}(x)=0 \Longleftrightarrow \cos x=-\frac{1}{2} \Longleftrightarrow x=\frac{2 \pi}{3} \text { or } x=\frac{4 \pi}{3}
\end{aligned}
$$

As $f^{\prime}$ is defined everywhere these are the only critical numbers.


As a consequence:

- $f\left(\frac{2 \pi}{3}\right)=\frac{2 \pi}{3}+\sqrt{3}$ is a local maximum ( $f^{\prime}$ from + to - )
- $f\left(\frac{4 \pi}{3}\right)=\frac{4 \pi}{3}-\sqrt{3}$ is a local minimum $\left(f^{\prime}\right.$ from - to +$)$


## Derivatives and the Shape of a Graph

Let $I$ be an interval. If the graph of $f$ is called

- concave up on $I$ if it it lies above all its tangents on $I$
- concave down on I if it it lies below all its tangents on I

concave up

concave down

Imagine the graph as a street \& a car driving from left to right:

- then concave upward = turning left (increasing slope)
- then concave downward = turning right (decreasing slope)


## Derivatives and the Shape of a Graph



On which interval is the curve concave up / concave down?

- on (a,b) concave downward
- on (b,c) concave upward
- on (c,d) concave downward
- on (d,e) concave upward
- on (e,f) concave upward
- on (f,g) concave downward


## Derivatives and the Shape of a Graph

## Concavity Test

If $f^{\prime \prime}(x)>0$ for all $x$ in $I$, then $f$ is concave upward on $I$. If $f^{\prime \prime}(x)<0$ for all $x$ in $I$, then $f$ is concave downward on $I$.

A point $P$ on a curve $f(x)$ is called inflection point if $f$ is continuous at this point and the curve

- changes from concave upward to downward at $P$, or
- changes from concave downward to upward at $P$.



## Derivatives and the Shape of a Graph

Where are inflection points of $f(x)=x^{4}-4 x^{3}$ ?

$$
\begin{aligned}
f^{\prime}(x) & =4 x^{3}-12 x^{2} \\
f^{\prime \prime}(x) & =12 x^{2}-24 x=12 x(x-2)
\end{aligned}
$$

Thus $f^{\prime \prime}(x)=0$ for $x=0$ and $x=2$.

| Interval | $f^{\prime \prime}(x)$ |  |
| :---: | :---: | :--- |
| $x<0$ | + | concave upward on $(-\infty, 0)$ |
| $0<x<2$ | - | concave downward on $(0,2)$ |
| $2<x$ | + | concave upward on $(2, \infty)$ |

Thus the inflection points are:

- $(0,0)$ since the curve changes from concave up to down
- $(2,-16)$ since the curve changes from concave down to up


## Derivatives and the Shape of a Graph

## Second Derivative Test

Suppose $f^{\prime \prime}$ is continuous near $c$.

- If $f^{\prime}(c)=0$ and $f^{\prime \prime}(c)>0$, then $f$ has a local minimum at $c$.
- If $f^{\prime}(c)=0$ and $f^{\prime \prime}(c)<0$, then $f$ has a local maximum at $c$.

Where does $f(x)=x^{4}-4 x^{3}$ have local extrema?

$$
\begin{aligned}
f^{\prime}(x) & =4 x^{3}-12 x^{2}=4 x^{2}(x-3) \\
f^{\prime \prime}(x) & =12 x^{2}-24 x=12 x(x-2)
\end{aligned}
$$

Thus $f^{\prime}(x)=0$ for $x=0$ and $x=3$. Second Derivative Test:

$$
f^{\prime \prime}(0)=0 \quad f^{\prime \prime}(3)=36>0
$$

Thus $f(3)=-27$ is a local minimum as $f^{\prime}(3)=0$ and $f^{\prime \prime}(3)>0$.
The Second Derivative Test gives no information for $f^{\prime \prime}(0)=0$. However, the First Derivative Test $\ldots$ yields that $f(0)=0$ is no extremum since $f^{\prime}(x)<0$ for $x<0$ and $0<x<3$.

## Derivatives and the Shape of a Graph

## Curve Sketching

$$
f(x)=x^{4}-4 x^{3}=x^{3}(x-4) \quad f^{\prime}(x)=4 x^{2}(x-3)
$$

- $f(x)=0 \Longleftrightarrow x=0$ or $x=4$
- local minimum at $(3,-27)$ and $f^{\prime}(0)=0$
- inflection points $(0,0)$ and $(2,-16)$
- decreasing on $(-\infty, 0)$ and $(0,3)$, increasing on $(3, \infty)$
- concave up on $(-\infty, 0)$, down on $(0,2)$, up on $(2, \infty)$



## Derivatives and the Shape of a Graph

## Summary: Finding Local Extrema

Find critical numbers $c: f^{\prime}(c)=0$ or $f^{\prime}(c)$ does not exist.
First Derivative Test ( $f$ needs to be continuous at $c$ ):

- If $f^{\prime}$ changes from + to - at $c \Longrightarrow$ local maximum
- If $f^{\prime}$ changes from - to + at $c \Longrightarrow$ local minimum
- If $f^{\prime}$ does not change sign at $c \Longrightarrow$ no local extremum


## The Second Derivative Test:

1. $f^{\prime}(c)=0$ and $f^{\prime \prime}(c)>0 \Longrightarrow$ local minimum
2. $f^{\prime}(c)=0$ and $f^{\prime \prime}(c)<0 \Longrightarrow$ local maximum
3. $f^{\prime}(c)$ or $f^{\prime \prime}(c)$ does not exist or $f^{\prime \prime}(c)=0$
$\Longrightarrow$ use the First Derivative Test
