## Curve Sketching

For sketching a curve of $f(x)$ :

- determine the domain
- find the $y$-intercept $f(0)$ and the $x$-intercepts $f(x)=0$
- find vertical asymptotes $x=a$, that is:

$$
\lim _{x \rightarrow a^{-}}= \pm \infty \quad \text { or } \quad \lim _{x \rightarrow a^{+}}= \pm \infty
$$

- find horizontal asymptotes $y=L$, that is:

$$
\lim _{x \rightarrow \infty}=L \quad \text { or } \quad \lim _{x \rightarrow-\infty}=L
$$

- find intervals of increase $f^{\prime}(x)>0$ and decrease $f^{\prime}(x)<0$
- find local maxima and minima
- determine concavity on intervals and points of inflection
- $f^{\prime \prime}(x)>0$ concave upward
- $f^{\prime \prime}(x)<0$ concave downward
- inflections points where $f^{\prime \prime}(x)$ changes the sign


## Curve Sketching

For local minima and maxima:

- find critical numbers $c$
- then the first First Derivative Test:
- $f^{\prime}$ changes from + to - at $c \Longrightarrow$ maximum
- $f^{\prime}$ changes from - to + at $c \Longrightarrow$ minimum
- Second Derivative Test:
- $f^{\prime \prime}(c)<0 \Longrightarrow$ maximum
- $f^{\prime \prime}(c)>0 \Longrightarrow$ minimum
- $f^{\prime \prime}(c)=0 \Longrightarrow$ use First Derivative Test

Then sketch the curve:

- draw asymptotes as thin dashed lines
- mark intercepts, local extrema and inflection points
- draw the curve taking into account:
- increase / decrease, concavity and asymptotes


## Curve Sketching

Sketch the curve of $f(x)=\frac{2 x^{2}}{x^{2}-1}$.
The domain is $\{x \mid x \neq \pm 1\}$, that is, $(-\infty,-1) \cup(-1,1) \cup(1, \infty)$
We have $f(0)=0$ and $f(x)=0 \Longleftrightarrow x=0$
The vertical asymptotes are $x=-1$ and $x=1$

$$
\lim _{x \rightarrow-1^{-}}=\infty \quad \lim _{x \rightarrow-1^{+}}=-\infty \quad \lim _{x \rightarrow 1^{-}}=-\infty \quad \lim _{x \rightarrow 1^{+}}=\infty
$$

The horizontal asymptotes are $\quad y=2$

$$
\lim _{x \rightarrow \infty} f(x)=2 \quad \lim _{x \rightarrow-\infty} f(x)=2
$$

## Curve Sketching

Sketch the curve of $f(x)=\frac{2 x^{2}}{x^{2}-1}$.
The derivative is:

$$
f^{\prime}(x)=\frac{4 x\left(x^{2}-1\right)-2 x^{2}(2 x)}{\left(x^{2}-1\right)^{2}}=\frac{-4 x}{\left(x^{2}-1\right)^{2}}
$$

Thus

- increasing $\left(f^{\prime}(x)>0\right)$ on $(-\infty,-1) \cup(-1,0)$
- decreasing on $\left(f^{\prime}(x)<0\right)$ on $(0,1) \cup(1, \infty)$

The critical numbers are $\quad x=0 \quad\left(\right.$ since $\left.f^{\prime}(0)=0\right)$

- $f^{\prime}(x)$ changes from + to - at $0 \Longrightarrow$ local maximum $(0,0)$


## Curve Sketching

Sketch the curve of $f(x)=\frac{2 x^{2}}{x^{2}-1}$.

$$
f^{\prime}(x)=\frac{-4 x}{\left(x^{2}-1\right)^{2}}
$$

The second derivative is:

$$
\begin{aligned}
f^{\prime \prime}(x) & =\frac{-4\left(x^{2}-1\right)^{2}-(-4 x) \cdot 2\left(x^{2}-1\right) \cdot 2 x}{\left(x^{2}-1\right)^{4}} \\
& =\frac{-4\left(x^{2}-1\right)+16 x^{2}}{\left(x^{2}-1\right)^{3}}=\frac{12 x^{2}+4}{\left(x^{2}-1\right)^{3}}
\end{aligned}
$$

$12 x^{2}+4>0$ for all $x$
$f^{\prime \prime}(x)>0 \Longleftrightarrow\left(x^{2}-1\right)^{3}>0 \Longleftrightarrow x^{2}-1>0 \Longleftrightarrow|x|>1$

- concave upward on $(-\infty,-1) \cup(1, \infty)$
- concave downward on $(-1,1)$
- inflection points: none ( -1 and 1 not in the domain)


## Curve Sketching

Sketch the curve of $f(x)=\frac{2 x^{2}}{x^{2}-1}$.


## Slant Asymptotes

Asymptotes that are neither horizontal nor vertical:
If

$$
\lim _{x \rightarrow \infty}[f(x)-(m x+b)]=0
$$

or

$$
\lim _{x \rightarrow-\infty}[f(x)-(m x+b)]=0
$$

the the line $y=m x+b$ is called slant asymptote.


Note that the distance between curve and line approaches 0 .

## Slant Asymptotes

Sketch the graph of $f(x)=\frac{x^{3}}{2 x^{2}+1}$.
The domain is $(-\infty, \infty)$
The $\quad f(0)=0$ and $f(x)=0 \Longleftrightarrow x=0$
Vertical asymptotes: none. Horizontal asymptotes: none Slant asymptotes: $\quad y=\frac{1}{2} x \quad$ since

$$
\begin{aligned}
\lim _{x \rightarrow \infty}\left(\frac{x^{3}}{2 x^{2}+1}-\frac{x}{2}\right) & =\lim _{x \rightarrow \infty}\left(\frac{2 x^{3}-x\left(2 x^{2}+1\right)}{2\left(2 x^{2}+1\right)}\right) \\
& =\lim _{x \rightarrow \infty}\left(\frac{-x}{2\left(2 x^{2}+1\right)}\right)=0
\end{aligned}
$$

## Slant Asymptotes

Sketch the graph of $f(x)=\frac{x^{3}}{2 x^{2}+1}$.

$$
f^{\prime}(x)=\frac{3 x^{2}\left(2 x^{2}+1\right)-x^{3}(4 x)}{\left(2 x^{2}+1\right)^{2}}=\frac{2 x^{4}+3 x^{2}}{\left(2 x^{2}+1\right)^{2}}=\frac{x^{2}\left(2 x^{2}+3\right)}{\left(2 x^{2}+1\right)^{2}}
$$

Thus $f^{\prime}(x)>0$ for all $x \neq 0$. Hence increasing on $(-\infty, \infty)$.
Local minima, maxima: none (since $f^{\prime}$ does not change sign)
We have

$$
f^{\prime \prime}(x)=-\frac{2 x\left(2 x^{2}-3\right)}{\left(2 x^{2}+1\right)^{3}}
$$

Thus $f^{\prime \prime}(x)=0 \Longleftrightarrow x=0 \quad$ or $\quad x= \pm \sqrt{3 / 2}$

| Interval | $f^{\prime \prime}(x)$ |  |
| :---: | :---: | :--- |
| $x<-\sqrt{3 / 2}$ | + | concave up on $(-\infty,-\sqrt{3 / 2})$ |
| $-\sqrt{3 / 2}<x<0$ | - | concave down on $(-\sqrt{3 / 2}, 0)$ |
| $0<x<\sqrt{3 / 2}$ | + | concave up on $(0, \sqrt{3 / 2})$ |
| $\sqrt{3 / 2<x}$ | - | concave up down $(\sqrt{3 / 2}, \infty)$ |

Inflection points: $\left(-\sqrt{\frac{3}{2}},-\frac{3}{8} \sqrt{\frac{3}{2}}\right),(0,0)$ and $\left(\sqrt{\frac{3}{2}}, \frac{3}{8} \sqrt{\frac{3}{2}}\right)$

## Slant Asymptotes

Sketch the graph of $f(x)=\frac{x^{3}}{2 x^{2}+1}$.

- $x$ - and $y$-intercept: $\quad(0,0)$
- inflection points: $\left(-\sqrt{\frac{3}{2}},-\frac{3}{8} \sqrt{\frac{3}{2}}\right),(0,0)$ and $\left(\sqrt{\frac{3}{2}}, \frac{3}{8} \sqrt{\frac{3}{2}}\right)$
- slant asymptote: $\quad y=\frac{1}{2} x$



## Slant Asymptotes

Sketch the graph of $f(x)=\frac{x^{3}}{2 x^{2}+1}$.

- increasing on $(-\infty, \infty)$ and $f^{\prime}(0)=0$
- concave up on $(-\infty,-\sqrt{3 / 2})$ and $(0, \sqrt{3 / 2})$
- concave down on $(-\sqrt{3 / 2}, 0)$ and $(\sqrt{3 / 2}, \infty)$


