

Assume we want to find a root of a complicated function like:

$$f(x) = x^7 - x + \cos x$$

Often it is impossible to solve such equations! E.g. there are no formulas for solutions of polynomials of degree of \geq 5.

Can we at least find the root approximately?

Idea of Newton's Method

- Take an approximation x_1 of the root (a rough guess).
- Compute the tangent L_1 at $(x_1, f(x_1))$.
- The tangent L₁ is close to the curve...so x-intercept of L₁ will be close the the x-intercept of the function.

We can repeat this procedure to get improve the approximation.

We want to find an approximation of the root r of f(x).

- Take an approximation x₁ of the root (a rough guess).
- Compute the tangent L_1 at $(x_1, f(x_1))$.
- Find the x-intercept x_2 of the tangent L_1 .
- Compute the tangent L_2 at $(x_2, f(x_2))$.
- Find the x-intercept x_3 of the tangent L_2 .
- ... continue until approximation is good enough

How can we compute x_2 ? The tangent at $(x_1, f(x_1))$ is

$$y = f(x_1) + f'(x_1)(x - x_1)$$

For the *x*-intercept x_2 of the tangent, we have:

$$0 = f(x_1) + f'(x_1)(x_2 - x_1) \implies x_2 = x_1 - \frac{f(x_1)}{f'(x_1)}$$

We can repeat this process to get x_3 , x_4 , x_5 ...

Newton's Method

Let f(x) be a function, and x_1 and approximation of a root r.

We compute a sequence x_2, x_3, x_4, \ldots of approximations by

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

The hope is that x_2, x_3, \ldots get closer and closer to the root *r*.

Let $x_1 = 2$. Find the 3rd approximation to the root of $x^2 - 1$. f'(x) = 2x $x_2 = x_1 - \frac{f(x_1)}{f'(x_1)} = 2 - \frac{f(2)}{f'(2)} = 2 - \frac{3}{4} = \frac{5}{4} = 1.25$ $x_3 = x_2 - \frac{f(x_2)}{f'(x_2)} = \frac{5}{4} - \frac{f(\frac{5}{4})}{f'(\frac{5}{4})} = \frac{5}{4} - \frac{(\frac{5}{4})^2 - 1}{\frac{10}{4}} = \frac{41}{40} = 1.025$ The sequence x_1, x_2, x_3, \dots gets closer and closer to the root 1.

Newton's Method

Let f(x) be a function, and x_1 and approximation of a root r.

We compute a sequence x_2, x_3, x_4, \ldots of approximations by

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

The hope is that x_2, x_3, \ldots get closer and closer to the root *r*. However, this does not always work.

Let $x_1 = 1$. Find the 2nd approximation to the root of $\sqrt[3]{x}$.

Note that $x_2 = -2$ is further away from the root 0 than $x_1 = 1$.

Newton's Method

Let f(x) be a function, and x_1 and approximation of a root r.

We compute a sequence x_2, x_3, x_4, \ldots of approximations by

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

The hope is that x_2, x_3, \ldots get closer and closer to the root r. However, this does not always work.

For more complicated examples see

Chapter 4.8, Examples 1,2 and 3