Newton's Method

Assume we want to find a root of a complicated function like:

$$
f(x)=x^{7}-x+\cos x
$$

Often it is impossible to solve such equations! E.g. there are no formulas for solutions of polynomials of degree of ≥ 5.

Can we at least find the root approximately?

Newton's Method

Idea of Newton's Method

- Take an approximation x_{1} of the root (a rough guess).
- Compute the tangent L_{1} at $\left(x_{1}, f\left(x_{1}\right)\right)$.
- The tangent L_{1} is close to the curve... so x-intercept of L_{1} will be close the the x-intercept of the function.

We can repeat this procedure to get improve the approximation.

Newton's Method

We want to find an approximation of the root r of $f(x)$.

- Take an approximation x_{1} of the root (a rough guess).
- Compute the tangent L_{1} at $\left(x_{1}, f\left(x_{1}\right)\right)$.
- Find the x-intercept x_{2} of the tangent L_{1}.
- Compute the tangent L_{2} at $\left(x_{2}, f\left(x_{2}\right)\right)$.
- Find the x-intercept x_{3} of the tangent L_{2}.
- ... continue until approximation is good enough

Newton's Method

How can we compute x_{2} ? The tangent at $\left(x_{1}, f\left(x_{1}\right)\right)$ is

$$
y=f\left(x_{1}\right)+f^{\prime}\left(x_{1}\right)\left(x-x_{1}\right)
$$

For the x-intercept x_{2} of the tangent, we have:

$$
0=f\left(x_{1}\right)+f^{\prime}\left(x_{1}\right)\left(x_{2}-x_{1}\right) \Longrightarrow x_{2}=x_{1}-\frac{f\left(x_{1}\right)}{f^{\prime}\left(x_{1}\right)}
$$

We can repeat this process to get $x_{3}, x_{4}, x_{5} \ldots$

Newton's Method

Newton's Method

Let $f(x)$ be a function, and x_{1} and approximation of a root r.
We compute a sequence $x_{2}, x_{3}, x_{4}, \ldots$ of approximations by

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}
$$

The hope is that x_{2}, x_{3}, \ldots get closer and closer to the root r.

Let $x_{1}=2$. Find the 3rd approximation to the root of $x^{2}-1$.
$f^{\prime}(x)=2 x$

$$
\begin{aligned}
& x_{2}=x_{1}-\frac{f\left(x_{1}\right)}{f^{\prime}\left(x_{1}\right)}=2-\frac{f(2)}{f^{\prime}(2)}=2-\frac{3}{4}=\frac{5}{4}=1.25 \\
& x_{3}=x_{2}-\frac{f\left(x_{2}\right)}{f^{\prime}\left(x_{2}\right)}=\frac{5}{4}-\frac{f\left(\frac{5}{4}\right)}{f^{\prime}\left(\frac{5}{4}\right)}=\frac{5}{4}-\frac{\left(\frac{5}{4}\right)^{2}-1}{\frac{10}{4}}=\frac{41}{40}=1.025
\end{aligned}
$$

The sequence $x_{1}, x_{2}, x_{3}, \ldots$ gets closer and closer to the root 1 .

Newton's Method

Newton's Method

Let $f(x)$ be a function, and x_{1} and approximation of a root r.
We compute a sequence $x_{2}, x_{3}, x_{4}, \ldots$ of approximations by

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}
$$

The hope is that x_{2}, x_{3}, \ldots get closer and closer to the root r. However, this does not always work.

Let $x_{1}=1$. Find the 2 nd approximation to the root of $\sqrt[3]{x}$.

$$
\begin{aligned}
f^{\prime}(x) & =\frac{1}{3 \sqrt[3]{x^{2}}} \\
x_{2} & =1-\frac{f(1)}{f^{\prime}(1)}=1-\frac{1}{\left(\frac{1}{3}\right)}=-2
\end{aligned}
$$

Note that $x_{2}=-2$ is further away from the root 0 than $x_{1}=1$.

Newton's Method

Newton's Method

Let $f(x)$ be a function, and x_{1} and approximation of a root r.
We compute a sequence $x_{2}, x_{3}, x_{4}, \ldots$ of approximations by

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}
$$

The hope is that x_{2}, x_{3}, \ldots get closer and closer to the root r. However, this does not always work.

For more complicated examples see

- Chapter 4.8, Examples 1,2 and 3

