HONE/BEE DISEASES AND PESTS

Sacbrood virus (SBV) disease

- Sacbrood disease is a viral infectious disease of honeybee immature forms within the capped brood and adult bee due to an Iflaviridae.
- SBV may remain as a covert infection in colonies.
- SBV may cause overt infection in the brood.
- The infection is mainly considered asymptomatic in adults but may be responsible for problems, in particular through the secretion of the brood-food.
- The disease is usually unimportant in *A. mellifera* (affecting some larvae, which are quickly removed from the cells and the hive by cleaners), but is highly lethal in *A. cerana*.

Clinical signs

- SBV disease usually occurs in spring or at the beginning of summer (when the brood is reared).
- Clinical signs may not be observed due to the actions of cleaner bees.
- The brood may appear irregular or scattered with punctured capped cells.
- The cells with punctured cappings contain sac or scales.
- Larvae infected by SBV fail to pupate after cell-capping and die.

- Recent studies show that SBV is found in Varroa, which is believed to be a vector of this virus.
- Factors contributing to overt SBV infection are usually the consequence of nutritional deficiency:
 - Lack of food
 - Confinement
 - Population unbalance
 - Poisoning is also supposed to be a predisposing factor
- Diagnosis
 - Clinical signs
 - Laboratory confirmation (RT-PCR)

Manegement

- The management of SBV disease involves good beekeeping sanitary practices, including optimal and measured control of V. destructor infestation.
- Good practices usually allow clinical recovery, associated with a high-quality nectar flow and sufficient pollen.
- It is sometimes considered that if more than 20% of the brood is infected, then the colony should be eliminated because it is likely to be too weak to allow a sufficient renewal of its population.

Acute bee paralysis virus (ABPV) disease

- ABPV is a single-stranded RNA Dicistroviridae virus.
- This virus has been reported in several countries and is believed to have been a main cause of mortality of bees in some countries.
- Before the *Varroa* pandemic, ABPV was rarely considered as responsible for disease and/or mortality of bees and colonies.
- ABPV may remain in colonies as a covert infection.

Clinical signs

- ABPV virus is reported to become pathogenic following its direct injection into the hemolymph by *V. destructor* mites.
- Bees walking around, unable to fly, wandering more or less close to the hives before dying.
- The position of the wings is abnormal, asymmetric, and/or pointing straight out from the body.
- The brood cells can be punctured and mortality of immature forms can be observed.
- At the colony level, it may cause weakening and acute collapse.

- ABPV is able to replicate and infect the brain and food-producing glands, allowing persistent infection in colonies.
- Several infected larvae may die.
- Infested by V. destructor, adults and pupae die rapidly.
- The diagnostic method is to perform a RT-PCR test in the laboratory if ABPV infection suspected.

Manegement

- The control of ABPV mainly involves
 - sanitary and prophylactic methods,
 - good husbandry practices,
 - and in particular control of *Varroa* infestation within the colonies.

Kashmir bee virus (KBV) disease

- To date, KBV is considered experimentally as one of the most virulent honeybee-infecting viruses.
- When inoculated experimentally into the hemolymph of honeybees, it multiplies very rapidly and may induce bee mortality within three days.
- When inoculated via feeding it does not induce any clinical signs or mortality.
- As with many honeybee viruses, KBV has been described in asymptomatic and healthy colonies.

- KBV can become virulent and lethal for honeybees due to the mite V. destructor, which inoculates the virus through the cuticle into the hemolymph while feeding.
- Varroa is a vector of the virus.
- KBV induce mortality without characteristic symptoms at all stages of honeybee life.
- At the colony level, KBV may be responsible for sudden colony weakening and mortality in association with even moderate Varroa infestation.
- Prophylactic and control management of KBV must mainly take into account optimal and measured *Varroa* infestation control.

Israeli acute
paralysis virus (IAPV)
disease

- Discovered in 2004 in Israel, IAPV was prematurely and wrongly thought to be major cause of colony collapse disorder (CDC) in the US.
- The virus may affect all stages and castes of A. mellifera.
- IAPV in experimental conditions is responsible for shivering wings, progressive paralysis, and death, while the body of the bee becomes darker and hairless.
- V. destructor is an active vector of this virus as well as ABPV and KBV, thus controlling mite infestation is necessary to prevent the associated IAPV infection.

Black queen cell virus (BGCV)

- BQCV was first detected in affected queen larvae and pre-pupae.
- It is today found worldwide and may persist as a covert infection in colonies.
- The cells with infected larvae develop dark brown or black cell walls.
- Within queen cells, the diseased pre-pupae or pupae cannot develop into adult queens, and die.
- The diseased larvae is a pale-yellow color and forms a sac-like skin (a symptom somewhat similar to that induced by SBV).

- The main transmission route is horizontal (oral transmission).
- BQCV infection is closely associated with *Nosema* infection and co-infection seems to be required to covert infection.
- BQCV is also thought to be transmitted vertically because it has been found in queen ovaries.
- Controlling Nosema infection is necessary to control as far as possible BQCV infection.