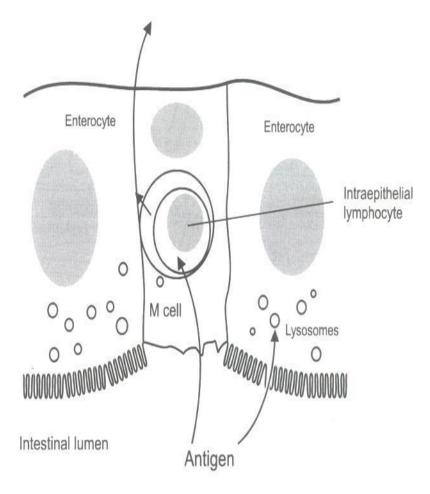
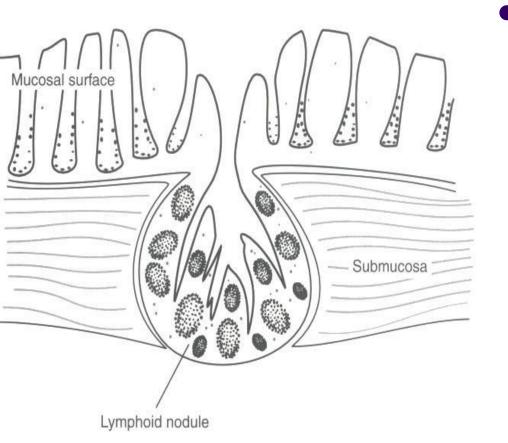

Immunity at Body Surfaces	
Lymphoid Tissues on Mucosal Surfaces	

MUCOSAL IMMUNITY Mucosal Lymphoid Tissues



- GALT (gutassociated lymphoid tissue)
- BALT: bronchus associated lymphoid tissue
- MALTs:mucosa-associated lymphoid tissues
 - * Examined in two categories:
- Stimulant foci (where antigens are processed and immune response begins
- Effector foci (where humoral and cellular immunity develop)

MUCOSAL IMMUNITY Mucosal Lymphoid Tissues

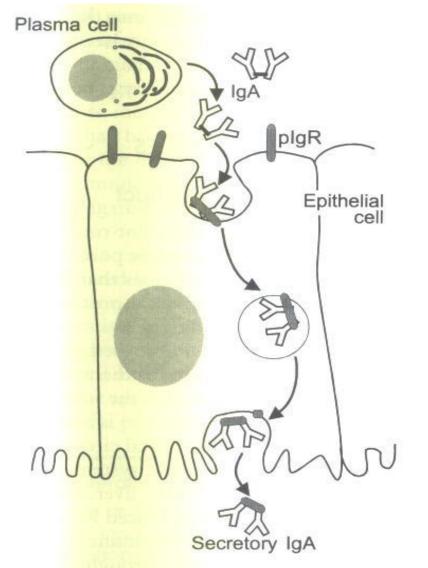


 M cells: It is between intestinal epithelial cells and processes antigens and presents them to intraepithelial lymphocytes
Alert Focuses

MUCOSAL IMMUNITY Mucosal Lymphoid Tissues

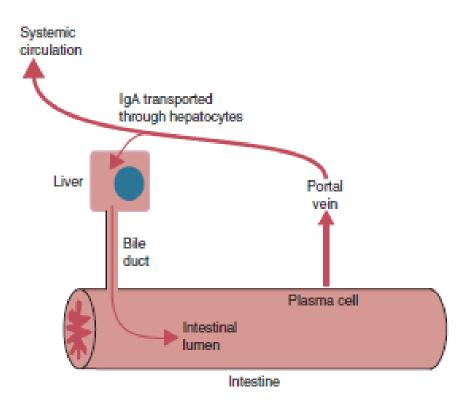
 Effector foci: B and Tlymphocyte communities
B-lymphocytes
expressing IgA have
affinity to all mucosal
surfaces in the body Th2
cells are found in the
subepithelial area

MUCOSAL IMMUNITY


Antibody Response-Immunoglobulin A

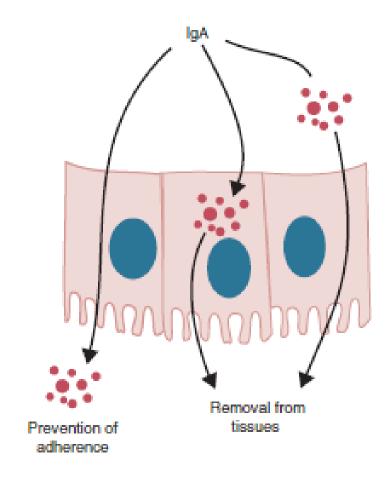
Synthesis mechanism of IgA on mucosal surfaces:

- Step: Processing of antigen by APC (M cells, Blymphocytes, macrophages, dendritic cells)
- 2. Step: Presenting to Th2 cells
- 3. **Step:** B-lymphocyte stimulation of Th2s (TGF-beta)
- Step: Proliferation of B-lymphocytes, isotype change, affinity maturation (IL-2,4,5,10) and conversion to plasma cells (IL-6) antibody synthesis


MUCOSAL IMMUNITY Antibody Response-Immunoglobulin A

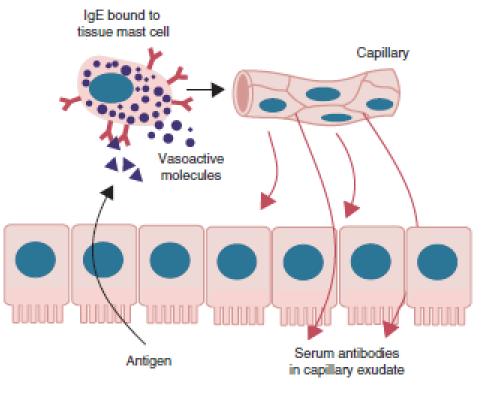
- Dimeric IgA synthesis occurs in plasma cells in the intestinal submucosa
- Dimeric IgA binds to polymeric IgR on the epithelial cell surface and is introduced into the cell by endocytosis.
- Moves into lumens within vesicle It binds to the cell membrane to switch to lumen and the cell-bound portion of pIgR is cut with proteolytic enzymes.
- IgA-pIgR complex is released to the cell surface and released to the lumen
- plgR = secretory component

MUCOSAL IMMUNITY Antibody Response-Immunoglobulin A


- IgA-positive B-lymphocytes stimulated in the intestine pass into the bloodstream and are transported to other mucosal surfaces.
- Thus, against a pathogen in the intestine, other mucosal surfaces of the body

(breast, respiratory system, etc.) specific IgA production

Immunological memory does not develop in IgA response in mucosa



MUCOSAL IMMUNITY Antibody Response-Immunoglobulin A

- The most important function of IgA is IMMUNE EXCLUSION.
- Immune exclusion occurs in the lumenin-cell-submucosa.
- There is no other example of this mechanism in the immune system.

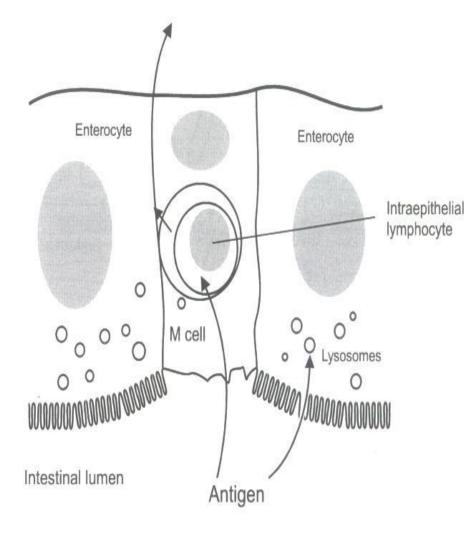
MUCOSAL IMMUNITY Antibody Response-Immunoglobulin E

- IgEs are also produced in mucosal lymphoid tissues and are usually bound on the surface of mucosal mast cells.
- IgEs meet microorganisms that cross the IgA barrier and pass into submucosa
- The most important function of IgE is IMMUNE ELIMINATION.
- IgEs have important functions in immune response to parasites and allergic reactions.

MUCOSAL IMMUNITY Antibody Response-Immunoglobulin G

- It is high in milk and colostrum of ruminants,
- IgGs are more functional in the respiratory system than intestines (Why?)
- The most important functions; complement activation, opsonization, ADCC)

MUCOSAL IMMUNITY


Antibody Response-Immunoglobulin M

- There is no IgM activity on mucosal surfaces in adults,
- The most important and active IgM in the mucous membranes of newborns (Why?)
- Its function is immune exclusion.

MUCOSAL IMMUNITY Cellular Response

- Intraepithelial lymphocytes - Immune system cells that first encounter antigen on mucosal surfaces
- Functions
- -Direct cytotoxic effect against parasites and bacteria,
- ADCC
- Macrophage activation by synthesizing cytokines