Work and Kinetic Energy

- Work
- Kinetic Energy and the Work-Energy Theorem
- Work and Energy with Varying Forces
- Power

Why Energy?

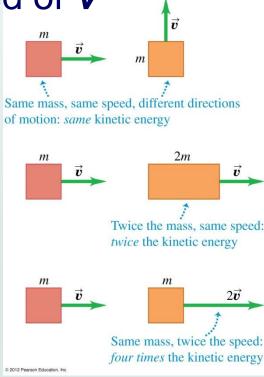
- Why do we need a concept of energy?
- The energy approach to describing motion is particularly useful when Newton's Laws are difficult or impossible to use.
- Energy is a scalar quantity. It does not have a direction associated with it.

Kinetic Energy

- Kinetic Energy is energy associated with the state of motion of an object
- For an object moving with a speed of v

$$K = \frac{1}{2}mv^2$$

- SI unit: joule (J)
- 1 joule = 1 J = 1 kg m^2/s^2



Kinetic Energy for Various Objects

$$KE = \frac{1}{2}mv^2$$

TABLE 7.1

Kinetic Energies for Various Objects

Object	Mass (kg)	Speed (m/s)	Kinetic Energy (J)
Earth orbiting the Sun	5.98×10^{24}	2.98×10^{4}	2.66×10^{33}
Moon orbiting the Earth	7.35×10^{22}	1.02×10^{3}	3.82×10^{28}
Rocket moving at escape speeda	500	1.12×10^4	3.14×10^{10}
Automobile at 65 mi/h	2 000	29	8.4×10^{5}
Running athlete	70	10	3 500
Stone dropped from 10 m	1.0	14	98
Golf ball at terminal speed	0.046	44	45
Raindrop at terminal speed	3.5×10^{-5}	9.0	1.4×10^{-3}
Oxygen molecule in air	5.3×10^{-26}	500	6.6×10^{-21}

^a Escape speed is the minimum speed an object must reach near the Earth's surface to move infinitely far away from the Earth.

Special case: Constant Acceleration

eliminating *t*:

Remember result eliminating t:
$$v^2 - v_0^2 = 2a(x - x_0)$$

$$\frac{1}{2}mv^2 - \frac{1}{2}mv_0^2 = ma(x - x_0)$$
$$= ma\Delta x$$

But
$$F=ma!$$

$$\Delta(\frac{1}{2}mv^2) = F\Delta x$$

Work W

* Start with $\frac{1}{2}mv^2 - \frac{1}{2}mv_0^2 = F_x \Delta x$ Work "W"

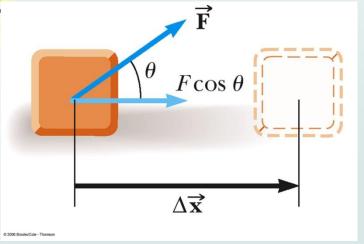
- Work provides a link between force and energy
- Work done on an object is transferred to/from it
- If W > 0, energy added: "transferred to the object"
- If W < 0, energy taken away: "transferred from the object"

Definition of Work W

The work, W, done with a constant force on an object is defined as the product of the force component in the displacement direction and the magnitude of displacement

$$W \equiv (F\cos\theta)\Delta x = \vec{F} \cdot \Delta \vec{x}$$

- F is the magnitude of the force
- Δ x is the magnitude of the
- object's displacement
- θ is the angle between F and Δx



Work Unit

- no information about
 - time taken for displacement to take place
 - Velocity or acceleration of an object
- Work is a scalar quantity
- SI Unit

- $\frac{1}{2}mv^2 \frac{1}{2}mv_0^2 = (F\cos\theta)\Delta x$
- Newton meter = Joule
 - ⋄ N m = J
 - \bullet J = kg \bullet m² / s² = (kg \bullet m / s²) \bullet m

 Figure 7.2

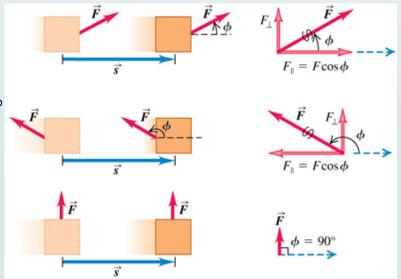
Physics for Scientists and Engineers 6th Edition, Thomson Brooks/Cole © 2004; Chapter 7

Work: + or -?

Work can be positive, negative, or zero. Work can be positive, negative or zero. The sign of the work depends on the direction of the force according to the displacement

$$W \equiv (F\cos\theta)x = \vec{F} \cdot \vec{x}$$

- Work positive: if $90^{\circ} > \theta > 0^{\circ}$
- Work negative: if $180^{\circ} > \theta > 90^{\circ}$
- Work zero: W = 0 if $\theta = 90^{\circ}$
- ♦ Work maximum if $\theta = 0^{\circ}$
- Work minimum if $\theta = 180^{\circ}$



Example: Work Can Be Positive or Negative

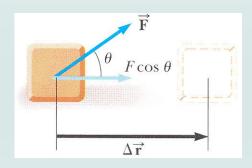
- Work is positive when lifting the box
- Work would be negative if lowering the box
 - The force would still be upward, but the displacement would be downward

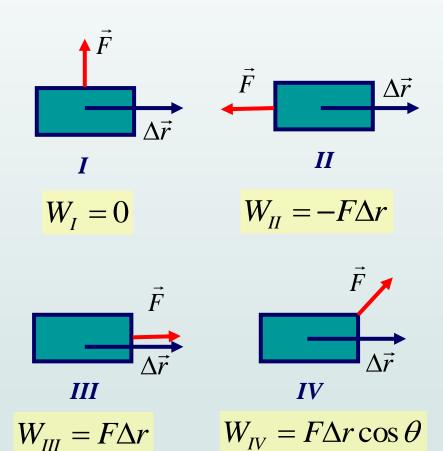
Figure 7.3
Physics for Scientists and Engineers 6th Edition,
Thomson Brooks/Cole © 2004; Chapter 7

Work Done by a Constant Force

The work W is performed by an agent that applies a constant force on the system, the magnitude F of the force, the magnitude of the displacement Δr and cos θ of the force application point; where, between the force vector and the displacement vector, θ:

$$W \equiv \vec{F} \cdot \Delta \vec{r} = F \Delta r \cos \theta$$





Work and Force

An man returning pulls a sledge. The total mass of the sled is 50.0 kg, and he exerts a force of 2.40×10^2 N on the sled by pulling on the rope. How much work does he do on the sled if $\theta = 30^{\circ}$ and he pulls the sled 5.0 m?

```
W = (F \cos \theta) \Delta x
= (2.40×10<sup>2</sup> N)(cos 30°)(5.0m)
= 10.4×10<sup>2</sup> J
```

Work Done by Multiple Forces

If you apply more than one force to an object, the total work equals the algebraic sum of the work done by the individual forces

$$W_{\rm net} = \sum W_{\rm by\ individual\ forces}$$

 Work is a scalar, so this is the algebraic sum

$$W_{net} = W_g + W_N + W_F = (F \cos \theta) \Delta r$$

Figure 7.3
Physics for Scientists and Engineers 6th Edition,
Thomson Brooks/Cole © 2004; Chapter 7

Kinetic Energy

- Kinetic energy associated with the motion of an object $K = \frac{1}{2}mv^2$
- Scalar quantity with the same unit as work
- Work is related to kinetic energy

$$\frac{1}{2}mv^2 - \frac{1}{2}mv_0^2 = F_{net}\Delta x$$

$$W_{net} = K_f - K_i = \Delta K$$

Special case: Constant Acceleration

eliminating t:

Remember result eliminating t:
$$v^2 - v_0^2 = 2a(x - x_0)$$

$$\frac{1}{2}mv^{2} - \frac{1}{2}mv_{0}^{2} = ma(x - x_{0})$$
$$= ma\Delta x$$

But
$$F=ma!$$

$$\Delta(\frac{1}{2}mv^2) = F\Delta x$$