Physics 101: Mechanics Lecture 3

Motion along a straight line

\square Motion

- Position and displacement
- Average velocity and average speed
- Instantaneous velocity and speed
- Acceleration
\square Free fall acceleration

Motion

\square Everything moves!
\square Simplification: Moving object is a particle or moves like a particle: "point object"
\square Simplest case: Motion along straight line, 1 dimension

Physics for Scientists and Engineers 6th Edition, Thomson Brooks/Cole © 2004;

One Dimensional Position x

\square What is motion? Change of position over time.
\square How can we represent position along a straight line?
\square Position definition:

- a starting point: origin ($x=0$), x relative to origin
- Direction: positive (right or up), negative (left or down)
- It depends on time: $\mathrm{t}=0$ (start clock), $\mathrm{x}(\mathrm{t}=0)$ does not have to be zero.
- Position has units of [Length]: meters.

Vector and Scalar

\square A vector quantity is characterized by having both a magnitude and a direction.

- Displacement, Velocity, Acceleration, Force ...
- Denoted in boldface type with an arrow over the top. $\vec{v}, \vec{a}, \vec{F}$.
\square Scales have a quantity size, but no direction.
- Distance, Mass, Temperature, Time ...
\square For the motion along a straight line, the direction is represented simply by + and - signs.
- + sign: Right or Up.
- - sign: Left or Down.
- 2-D and 3-D motions.

Quantities in Motion

\square Any motion involves three concepts

- Displacement
- Velocity
- Acceleration
\square These concepts can be used to study objects in motion.

Displacement

\square Displacement is a change of position in time.
\square Displacement: $\Delta x=x_{f}\left(t_{f}\right)-x_{i}\left(t_{i}\right)$

- f stands for final and i stands for initial.
\square It is a vector quantity.
\square It has both magnitude and direction: + or - sign
\square It has units of [length]: meters.

$$
\begin{array}{cc}
x_{1}\left(t_{1}\right)=+3.5 \mathrm{~m} & x_{1}\left(t_{1}\right)=-2.0 \mathrm{~m} \\
x_{2}\left(t_{2}\right)=-3.0 \mathrm{~m} & x_{2}\left(t_{2}\right)=+2.0 \mathrm{~m} \\
\Delta x=-3.0 \mathrm{~m}-3.5 \mathrm{~m}=-6.5 \mathrm{~m} & \Delta x=+2.0 \mathrm{~m}+2.0 \mathrm{~m}=+4.0 \mathrm{~m}
\end{array}
$$

Distance and Position-time graph

Figure 1, Table 1
Physics for Scientists and
Engineers 6th Edition,
Thomson Brooks/Cole ©
2004; Chapter 2

- Displacement in space
- From A to B: $\Delta x=x_{B}-x_{A}=52 m-30 m=22 m$
- From A to C: $\Delta x=x_{c}-x_{A}=38 m-30 m=8 m$
\square Distance is the length of a path followed by a particle
- from A to $B: d=\left|x_{B}-x_{A}\right|=|52 m-30 m|=22 m$
- from A to $C: d=\left|x_{B}-x_{A}\right|+\left|x_{C}-x_{B}\right|=22 m+|38 m-52 m|=36 m$
\square Displacement is not Distance.

Velocity

\square Velocity is the rate of change of position.
\square Velocity is a vector quantity.
\square Velocity has both magnitude and direction.
\square Velocity has a unit of [length/time]: meter/second.
\square Definition:

- Average velocity $v_{a v g}=\frac{\Delta x}{\Delta t}=\frac{x_{f}-x_{i}}{\Delta t}$
- Average speed $s_{\text {avg }}=\frac{\text { total distance }}{\Delta t}$
- Instantaneous velocity

$$
v=\lim _{\Delta t \rightarrow 0} \frac{\Delta x}{\Delta t}=\frac{d x}{d t}
$$

Average Velocity

\square Average velocity

$$
v_{a v g}=\frac{\Delta x}{\Delta t}=\frac{x_{f}-x_{i}}{\Delta t}
$$

\square It is slope of line segment.
\square Dimension: [length/time].
\square SI unit: m/s.
\square It is a vector.
\square Displacement sets its sign.

Average Speed

\square Average speed

$$
s_{\mathrm{avg}}=\frac{\text { total distance }}{\Delta t}
$$

\square Dimension: [length/time], m/s.
\square Scalar: No direction involved.
\square Not necessarily close to $\mathrm{V}_{\text {avg }}$:

- $\mathrm{S}_{\mathrm{avg}}=(6 \mathrm{~m}+6 \mathrm{~m}) /(3 \mathrm{~s}+3 \mathrm{~s})=2 \mathrm{~m} / \mathrm{s}$
- $\mathrm{V}_{\mathrm{avg}}=(0 \mathrm{~m}) /(3 \mathrm{~s}+3 \mathrm{~s})=0 \mathrm{~m} / \mathrm{s}$

Instantaneous Velocity

\square The instant means "in some moment". Instantaneous velocity shows what is at every point.

- Limiting process:
- Chords approach the tangent as $\Delta t=>0$
- Slope measure rate of change of position
\square Instantaneous velocity: $v=\lim _{\Delta \rightarrow 0} \frac{\Delta x}{\Delta t}=\frac{d x}{d t}$

Figure 3
Physics for Scientists and Engineers 6th Edition, Thomson Brooks/Cole © 2004; Chapter 2
\square Dimension: [Length/time], m/s.
\square It is the slope of the tangent line to $x(t)$.
\square Instantaneous velocity $\mathrm{v}(\mathrm{t})$ is a function of time.

Uniform Velocity

\square Uniform velocity is constant velocity
\square The instantaneous velocities are always the same, all the instantaneous velocities will also equal the average velocity
\square Begin with $v_{x}=\frac{\Delta x}{\Delta t}=\frac{x_{f}-x_{i}}{\Delta t}$ hen $x_{f}=x_{i}+v_{x} \Delta t$

Average Acceleration

\square Changing velocity (non-uniform) means an acceleration is present.
\square Acceleration is the rate of change of velocity.
\square Acceleration is a vector quantity.
\square Acceleration has both magnitude and direction.
\square Acceleration has a unit of [length/time ${ }^{2}$]: m/s ${ }^{2}$.
\square Definition:

- Average acceleration $a_{a y g}=\frac{\Delta v}{\Delta t}=\frac{v_{f}-v_{i}}{t_{f}-t_{i}}$
- Instantaneous acceleration

$$
a=\lim _{\Delta t \rightarrow 0} \frac{\Delta v}{\Delta t}=\frac{d v}{d t}=\frac{d}{d t} \frac{d x}{d t}=\frac{d^{2} v}{d t^{2}}
$$

Average Acceleration

\square Average acceleration

$$
a_{a v g}=\frac{\Delta v}{\Delta t}=\frac{v_{f}-v_{i}}{t_{f}-t_{i}}
$$

- Velocity as a function of time

$$
v_{f}(t)=v_{i}+a_{\text {avg }} \Delta t
$$

Instantaneous and Uniform Acceleration

\square The limit of the average acceleration as the time interval goes to zero

$$
a=\lim _{\Delta t \rightarrow 0} \frac{\Delta v}{\Delta t}=\frac{d v}{d t}=\frac{d}{d t} \frac{d x}{d t}=\frac{d^{2} x}{d t^{2}}
$$

\square When the instantaneous accelerations are always the same, the acceleration will be uniform. The instantaneous acceleration will be equal to the average acceleration

- Instantaneous acceleration is the slope of the tangent to the curve of the velocity-time graph

Motion with a Uniform Acceleration

\square Acceleration is a constant
\square Kinematic Equations

Figure 10
Physics for Scientists and
Engineers 6th Edition,
Thomson Brooks/Cole © 2004; Chapter 2

$$
\begin{aligned}
& v=v_{0}+a t \\
& \Delta x=\bar{v} t=\frac{1}{2}\left(v_{0}+v\right) t \\
& \Delta x=v_{0} t+\frac{1}{2} a t^{2} \\
& v^{2}=v_{0}^{2}+2 a \Delta x
\end{aligned}
$$

Free Fall Acceleration

Freetal laceleadion:

- Earth gravity provides a constant acceleration.
- Free-fall acceleration is independent of mass.
- Magnitude: $|\mathrm{a}|=\mathrm{g}=9.8 \mathrm{~m} / \mathrm{s}^{2}$
\square Direction: always downward, so a_{g} is negative if define "up" as positive, $a=-g=-9.8 \mathrm{~m} / \mathrm{s}^{2}$

Free Fall Acceleration

\square Two important equation:

$$
\begin{gathered}
v=v_{0}-g t \\
x-x_{0}=v_{0} t-\frac{1}{2} g t^{2}
\end{gathered}
$$

\square If $t_{0}=0, v_{0}=0, x_{0}=0$
\square So, $t^{2}=2|x| / g$ same for two balls!

