Motion in Two Dimensions

\square Go over vector and vector algebra

- Displacement and position in 2-D
- Average and instantaneous velocity in 2-D
\square Average and instantaneous acceleration in 2-D
- Projectile motion
- Uniform circle motion
- Relative velocity*

Vector and its components

\square The components are the legs of the right triangle

$$
\vec{A}=\vec{A}_{x}+\vec{A}_{y}
$$ whose hypotenuse is A

$$
\left\{\begin{array}{l}
A_{x}=A \cos (\theta) \\
A_{y}=A \sin (\theta)
\end{array}\right.
$$

$$
\left\{\begin{array}{l}
|\vec{A}|=\sqrt{\left(A_{x}\right)^{2}+\left(A_{y}\right)^{2}} \\
\tan (\theta)=\frac{A_{y}}{A_{x}} \text { or } \theta=\tan ^{-1}\left(\frac{A_{y}}{A_{x}}\right)
\end{array}\right.
$$

Motion in two dimensions

- Kinematic variables in one dimension
- Position:
- Velocity:
- Acceleration: $\quad a(t) \mathrm{m} / \mathrm{s}^{2}$
\square Kinematic variables in three dimensions
- Position: $\quad \vec{r}(t)=x \hat{i}+y \hat{j}+z \hat{k} \quad \mathrm{~m}$
- Velocity: $\quad \vec{v}(t)=v_{x} \hat{i}+v_{y} \hat{j}+v_{z} \hat{k} \mathrm{~m} / \mathrm{s}$
- Acceleration: $\vec{a}(t)=a_{x} \hat{i}+a_{y} \hat{j}+a_{z} \hat{k} \quad \mathrm{~m} / \mathrm{s}^{2}$

All are vectors: have direction and magnitudes

Position and Displacement

- In one dimension

$$
\begin{gathered}
\Delta x=x_{2}\left(t_{2}\right)-x_{1}\left(t_{1}\right) \\
x_{1}\left(\mathrm{t}_{1}\right)=-4.0 \mathrm{~m}, \mathrm{x}_{2}\left(\mathrm{t}_{2}\right)=+2.0 \mathrm{~m} \\
\Delta \mathrm{x}=+2.0 \mathrm{~m}+4.0 \mathrm{~m}=+6.0 \mathrm{~m}
\end{gathered}
$$

- In two dimensions
- Position: the position of an object is described by its position vector $\vec{r}(t)$ always points to particle from origin.
- Displacement: $\Delta \vec{r}=\vec{r}_{2}-\vec{r}_{1}$

$$
\begin{aligned}
& \Delta \vec{r}=\left(x_{2} \hat{i}+y_{2} \hat{j}\right)-\left(x_{1} \hat{i}+y_{1} \hat{j}\right) \\
& =\left(x_{2}-x_{1}\right) \hat{i}+\left(y_{2}-y_{1}\right) \hat{j} \\
& =\Delta x \hat{i}+\Delta y \hat{j}
\end{aligned}
$$

Average \& Instantaneous Velocity

\square Average velocity $\vec{v}_{\text {avg }} \equiv \frac{\Delta \vec{r}}{\Delta t}$

$$
\vec{v}_{\text {arg }}=\frac{\Delta x}{\Delta t} \hat{i}+\frac{\Delta y}{\Delta t} \hat{j}=v_{\text {avg }, x} \hat{i}+v_{\text {arg }, y} \hat{j}
$$

\square Instantaneous velocity

$$
\begin{gathered}
\vec{v} \equiv \lim _{t \rightarrow 0} \vec{v}_{\text {avg }}=\lim _{t \rightarrow 0} \frac{\Delta \vec{r}}{\Delta t}=\frac{d \vec{r}}{d t} \\
\vec{v}=\frac{d \vec{r}}{d t}=\frac{d x}{d t} \hat{i}+\frac{d y}{d t} \hat{j}=v_{x} \hat{i}+v_{y} \hat{j}
\end{gathered}
$$

$\square v$ is tangent to the path in $x-y$ graph;

Average \& Instantaneous Acceleration

\square Average acceleration

$$
\vec{a}_{a v g} \equiv \frac{\Delta \vec{v}}{\Delta t}
$$

$$
\vec{a}_{a r g}=\frac{\Delta v_{x}}{\Delta t} \hat{i}+\frac{\Delta v_{y}}{\Delta t} \hat{j}=a_{a v g, t}, \hat{i}+a_{a r g, y}, \hat{j}
$$

Figure 4.1
Physics for Scientists and Engineers 6th Edition, Thomson Brooks/Cole © 2004; Chapter 4
\square Instantaneous acceleration

$$
\vec{a} \equiv \lim _{t \rightarrow 0} \vec{a}_{\text {avg }}=\lim _{t \rightarrow 0} \frac{\Delta \vec{v}}{\Delta t}=\frac{d \vec{v}}{d t} \quad \vec{a}=\frac{d \vec{v}}{d t}=\frac{d v_{x}}{d t} \hat{i}+\frac{d v_{y}}{d t} \hat{j}=a_{x} \hat{i}+a_{y} \hat{j}
$$

- The magnitude of the velocity (the speed) can change
- The direction of the velocity can change, even though the magnitude is constant
\square Both the magnitude and the direction can change

Motion in two dimensions

\square Motions in three dimensions are independent components
\square Constant acceleration equations

$$
\vec{v}=\vec{v}_{0}+\vec{a} t \quad \vec{r}-\vec{r}=\vec{v}_{0} t+\frac{1}{2} \vec{a} t^{2}
$$

\square Constant acceleration equations hold in each dimension

$$
\begin{aligned}
& v_{x}=v_{0 x}+a_{x} t \\
& x-x_{0}=v_{0 x} t+\frac{1}{2} a_{x} t^{2} \\
& v_{x}^{2}=v_{0 x}^{2}+2 a_{x}\left(x-x_{0}\right)
\end{aligned}
$$

$$
v_{y}=v_{0 y}+a_{y} t
$$

$$
y-y_{0}=v_{0 y} t+\frac{1}{2} a_{y} t^{2}
$$

$$
v_{y}^{2}=v_{0 y}^{2}+2 a_{y}\left(y-y_{0}\right)
$$

- $t=0$ beginning of the process;
- $\vec{a}=a_{x} \hat{i}+a_{y} \hat{j} \quad$ where a_{x} and a_{y} are constant;
- Initial velocity $\vec{v}_{0}=v_{0 x} \hat{i}+v_{0 y} \hat{j}$ initial displacement $\vec{r}_{0}=x_{0} \hat{i}+y_{0} \hat{j}$

Projectile Motion

$\square \mathrm{x}$ - horizontal, y - vertical (up +)

- Try to pick $x_{0}=0, y_{0}=0$ at $t=0$
- Horizontal motion + Vertical motion
\square Horizontal: $a_{x}=0$, constant velocity motion
- Vertical: $a_{y}=-g=-9.8 \mathrm{~m} / \mathrm{s}^{2}, v_{0 y}=0$
\square Equations:

Types of Projectiles

\[

\]

Projectile Motion

$$
\begin{array}{ll}
v_{x}=v_{0 x} & v_{y}=v_{0 y}-g t \\
x=x_{0}+v_{0 x} t & y=y_{0}+v_{0 y} t-\frac{1}{2} g t^{2}
\end{array}
$$

Horizontal
Vertical
\square take $x_{0}=0, y_{0}=0$ at $t=0$

- Horizontal motion + Vertical motion
- Horizontal: $a_{x}=0$, constant velocity motion
- Vertical: $\quad a_{y}=-g=-9.8 \mathrm{~m} / \mathrm{s}^{2}$
$\square x$ and y are connected by time t
$\square y(x)$ is a parabola

Projectile Motion

\square Horizontal: $a_{x}=0$ and vertical: $a_{y}=-g$.

- Try to pick $x_{0}=0, y_{0}=0$ at $t=0$.
\square Velocity initial conditions:
- v_{0} can have x, y components.
- $v_{o x}$ is constant usually.
- $v_{0 y}$ changes continuously.
- Equations:

$$
v_{0 x}=v_{0} \sin \theta_{0} \quad v_{0 x}=v_{0} \cos \theta_{0}
$$

Horizontal
Vertical

$$
\begin{array}{ll}
v_{x}=v_{0 x} & v_{y}=v_{0 y}-g t \\
x=x_{0}+v_{0 x} t & y=y_{0}+v_{0 y} t-\frac{1}{2} g t^{2}
\end{array}
$$

Trajectory of Projectile Motion

- Initial conditions $(t=0): x_{0}=0, y_{0}=0$

$$
v_{0 x}=v_{0} \cos \theta_{0} \text { and } v_{0 y}=v_{0} \sin \theta_{0}
$$

\square Horizontal motion:

$$
\begin{aligned}
& \quad x=0+v_{0 x} t \Rightarrow t=\frac{x}{v_{0 x}} \Rightarrow \quad \text { Vertical motion: }
\end{aligned}
$$

$$
\begin{aligned}
y & =0+v_{0 y} t-\frac{1}{2} g t^{2} \\
y & =v_{0 y}\left(\frac{x}{v_{0 x}}\right)-\frac{g}{2}\left(\frac{x}{v_{0 x}}\right)^{2} \\
y & =x \tan \theta_{0}-\frac{g}{2 v_{0}{ }^{2} \cos ^{2} \theta_{0}} x^{2}
\end{aligned}
$$

- Parabola;
- $\theta_{0}=0$ and $\theta_{0}=90$?

What is R and h ?

- Initial conditions $(t=0): x_{0}=0, y_{0}=0$ $v_{0 x}=v_{0} \cos \theta_{0}$ and $v_{0 x}=v_{0} \sin \theta_{0}$, then $x=0+v_{0 x} t \quad 0=0+v_{0 y} t-\frac{1}{2} g t^{2}$

$$
t=\frac{2 v_{0 y}}{g}=\frac{2 v_{0} \sin \theta_{0}}{g}
$$

$$
R=x-x_{0}=v_{0 x} t=\frac{2 v_{0} \cos \theta_{0} v_{0} \sin \theta_{0}}{g}=\frac{v_{0}{ }^{2} \sin 2 \theta_{0}}{g}
$$

$$
h=y-y_{0}=v_{0 y} t_{h}-\frac{1}{2} g t_{h}{ }^{2}=v_{0 y} \frac{t}{2}-\frac{g}{2}\left(\frac{t}{2}\right)^{2}
$$

$$
h=\frac{v_{0}{ }^{2} \sin ^{2} \theta_{0}}{2 g}
$$

$$
v_{y}=v_{0 y}-g t=v_{0 y}-g \frac{2 v_{0 y}}{g}=-v_{0 y}
$$

Horizontal

$$
v_{x}=v_{0 x} \quad v_{y}=v_{0 y}-g t
$$

$$
x=x_{0}+v_{0 x} t \quad y=y_{0}+v_{0 y} t-\frac{1}{2} g t^{2}
$$

Projectile Motion

at Various Initial Angles

\square Complementary values of the initial angle result in the same range

- The heights will be different
\square The maximum range occurs at a projection angle of 45°

$$
R=\frac{v_{0}^{2} \sin 2 \phi}{g}
$$

Figure 4.11
Physics for Scientists and Engineers 6th Edition, Thomson Brooks/Cole © 2004; Chapter 4

Summary

\square Position $\quad \vec{r}(t)=x \hat{i}+y \hat{j}$
\square Average velocity $\vec{v}_{\text {avg }}=\frac{\Delta \vec{r}}{\Delta t}=\frac{\Delta x}{\Delta t} \hat{i}+\frac{\Delta y}{\Delta t} \hat{j}=v_{\text {avg }, x} \hat{i}+v_{\text {avg }, y} \hat{j}$
\square Instantaneous velocity $\quad v_{x} \equiv \frac{d x}{d t} \quad v_{y} \equiv \frac{d y}{d t}$

$$
\vec{v}(t)=\lim _{t \rightarrow 0} \frac{\Delta \vec{r}}{\Delta t}=\frac{d \vec{r}}{d t}=\frac{d x}{d t} \hat{i}+\frac{d y}{d t} \hat{j}=v_{x} \hat{i}+v_{y} \hat{j}
$$

- Acceleration $\quad a_{x} \equiv \frac{d v_{x}}{d t}=\frac{d^{2} x}{d t^{2}} \quad a_{y} \equiv \frac{d v_{y}}{d t}=\frac{d^{2} y}{d t^{2}}$

$$
\vec{a}(t)=\lim _{t \rightarrow 0} \frac{\Delta \vec{v}}{\Delta t}=\frac{d \vec{v}}{d t}=\frac{d v_{x}}{d t} \hat{i}+\frac{d v_{y}}{d t} \hat{j}=a_{x} \hat{i}+a_{y} \hat{j}
$$

- $\vec{r}(t), \vec{v}(t)$, and $\vec{a}(t)$ are not same direction.

