Circular Motion: Observations

\square Object moving along a curved path with constant speed

- Magnitude of velocity: same
- Direction of velocity: changing
- Velocity: changing
- Acceleration is NOT zero!
- Net force acting on an object is NOT zero
- "Centripetal force"

Figure 4.17
Physics for Scientists and Engineers 6th Edition, Thomson Brooks/Cole © 2004; Chapter 4

$$
\vec{F}_{n e t}=m \vec{a}
$$

Figure 6.2
Physics for Scientists and Engineers 6th Edition, Thomson Brooks/Cole © 2004; Chapter 6

Uniform circular motion

Constant speed, or, constant magnitude of velocity

Motion along a circle:
Changing direction of velocity

Uniform Circular Motion

\square Centripetal acceleration

$a_{r}=\frac{\Delta v}{\Delta t}=\frac{v^{2}}{r}$
\square Direction: Centripetal
$\frac{\Delta v}{v}=\frac{\Delta r}{r} \quad$ so, $\quad \Delta v=\frac{v \Delta r}{r}$
$\frac{\Delta v}{\Delta t}=\frac{\Delta r}{\Delta t} \frac{v}{r}=\frac{v^{2}}{r}$

Uniform Circular Motion

\square Velocity:

- Magnitude: constant v
- The direction of the velocity is tangent to the circle
\square Acceleration:

$$
a_{c}=\frac{v^{2}}{r}
$$

- directed toward the center of the circle of motion
\square Period:
- time interval required for one complete revolution of the particle

Relative Velocity

Figure 4.22
Physics for Scientists and
Engineers 6th Edition, Thomson Brooks/Cole ©
2004; Chapter 4

Figure 4.23
Physics for Scientists and Engineers 6th Edition, Thomson Brooks/Cole © 2004; Chapter 4

$$
\begin{array}{rlr}
\mathbf{r}^{\prime}=\mathbf{r}-\mathbf{v}_{0} t \quad \frac{d \mathbf{r}^{\prime}}{d t} & =\frac{d \mathbf{r}}{d t}-\mathbf{v}_{0} \quad \frac{d \mathbf{v}^{\prime}}{d t}=\frac{d \mathbf{v}}{d t}-\frac{d \mathbf{v}_{0}}{d t} \\
\mathbf{v}^{\prime} & =\mathbf{v}-\mathbf{v}_{0} &
\end{array}
$$

Because \mathbf{v}_{0} is constant, $d \mathbf{v}_{0} / d t=0$. Therefore, we conclude that $\mathbf{a}^{\prime}=\mathbf{a}$ because $\mathbf{a}^{\prime}=d \mathbf{v}^{\prime} / d t$ and $\mathbf{a}=d \mathbf{v} / d t$.

