Applications of Newton's Laws

- Newton's first law
- Newton's second law
\square Newton's third law
\square Frictional forces
\square Applications of
Newton's laws

Isaac \mathcal{N} ewton's

Force is a vector Unit of force in S.I.:
 $$
1 N=1 \frac{\mathrm{~kg} \cdot \mathrm{~m}}{\mathrm{~s}^{2}}
$$

Newton's Laws

If a net force is not applied to a body, the speed of the body can not change.
II. The net force on a body equals the body mass and acceleration.
When two bodies interact, the forces on the bodies are always equal in magnitude and vice versa.

Forces of Friction: f

* When an object is in motion on a surface or through a viscous medium, there will be a resistance to the motion. This resistance is called the friction force
This depends on the interaction between the object and its surroundings
* Force of static friction: f_{s}
\% Force of kinetic friction: f_{k}
Direction of friction force: The opposite of the desired direction of movement along the surface

Forces of Friction: Magnitude

* Magnitude: Friction is proportional to the normal force
* Static friction: $F_{f}=F \leq \mu_{s} N$
* Kinetic friction: $F_{f}=\mu_{k} N$
* μ is the coefficient of friction
Coefficient of friction is almost independent from contact area

Static Friction

\% Static friction acts to keep the object from moving
\% If $\overrightarrow{\mathbf{F}}$ increases, so does \vec{f}_{s}
\% If $\overrightarrow{\mathbf{F}}$ decreases, so does \vec{f}_{s}
\& $f_{s} \leq \mu_{s} N$

Figure 5.16
Physics for Scientists and Engineers 6th Edition, Thomson Brooks/Cole © 2004; Chapter 5

Kinetic Friction

The kinetic friction force acts when the object is in motion
Although μ_{k} can vary with speed, we will neglect such
variations
$f_{k}=\mu_{k} N$

Figure 5.16
Physics for Scientists and Engineers 6th Edition, Thomson Brooks/Cole © 2004; Chapter 5

Explore Forces of Friction

* Vary the applied force
* Note what happens when the box starts to move

Objects in Equilibrium

Objects that are either at rest or moving with constant velocity are said to be in balance
: Acceleration of an object is zero:

$$
\vec{a}=0
$$

the net force acting on the object is zero

$$
\sum \vec{F}=0
$$

Therefore, set of component equations given by

$$
\sum F_{x}=0 \quad \sum F_{y}=0
$$

Accelerating Objects

\square If an object that has an acceleration, there must be a nonzero net force acting on it
\square Apply Newton's Second Law in component form

$$
\begin{gathered}
\sum \vec{F}=m \vec{a} \\
\sum F_{x}=m a_{x} \quad \sum F_{y}=m a_{y}
\end{gathered}
$$

Inclined Plane

- Suppose a block with a mass of 2.50 kg is resting on a ramp. If the coefficient of static friction between the block and ramp is 0.350 , what maximum angle can the ramp make with the horizontal before the block starts to slip down?

Figure 5.19
Physics for Scientists and Engineers 6th Edition, Thomson Brooks/Cole © 2004; Chapter 5

Inclined Plane

* Newton 2nd law:
$\sum F_{x}=m g \sin \theta-\mu_{s} N=0$
$\sum F_{y}=N-m g \cos \theta=0$
Then

$$
N=m g \cos \theta
$$

$\sum F_{y}=m g \sin \theta-\mu_{s} m g \cos \theta=0$
Figure 5.19 Physics for Scientists and Engineers 6th Edition, Thomson Brooks/Cole © 2004; Chapter 5
So $\tan \theta=\mu_{s}=0.350$

$$
\theta=\tan ^{-1}(0.350)=19.3^{\circ}
$$

Multiple Objects

```
Figure 5.21
Physics for Scientists and
Engineers 6th Edition,
Thomson Brooks/Cole ©
2004; Chapter 5
```

\% A block of mass m 1 on a rough, horizontal surface is connected to a ball of mass m 2 by a lightweight cord over a lightweight, frictionless pulley as shown in figure. A force of magnitude F at an angle θ with the horizontal is applied to the block as shown and the block slides to the right. The coefficient of kinetic friction between the block and surface is μ_{k} Find the magnitude of acceleration of the two objects.

Multiple Objects

$\mathrm{m1}: \sum F_{x}=F \cos \theta-f_{k}-T=m_{1} a_{x}=m_{1} a$

$$
\sum F_{y}=N+F \sin \theta-m_{1} g=0
$$

m2:

$$
\sum F_{y}=T-m_{2} g=m_{2} a_{y}=m_{2} a
$$

$$
\begin{aligned}
T & =m_{2}(a+g) \\
N & =m_{1} g-F \sin \theta \\
f_{k} & =\mu_{k} N=\mu_{k}\left(m_{1} g-F \sin \theta\right)
\end{aligned}
$$

$F \cos \theta-\mu_{k}\left(m_{1} g-F \sin \theta\right)-m_{2}(a+g)=m_{1} a$

$$
a=\frac{F\left(\cos \theta+\mu_{k} \sin \theta\right)-\left(m_{2}+\mu_{k} m_{1}\right) g}{m_{1}+m_{2}}
$$

