
Programming Languages 

Concepts

Assoc. Prof. Dr. Mehmet 
Serdar Güzel

•slid

e 1

COM241

Slides are mainly adapted from the following course page:

http://www.cs.utexas.edu/~shmat/courses/cs345/



Lecturer

 Instructor: Assoc. Prof Dr. Mehmet S Güzel 

 Office hours: Tuesday, 1:30-2:30pm 

 Open door policy – don’t hesitate to stop by!

 Watch the course website

 Assignments, lab tutorials, lecture notes

•slid

e 2



Course Materials

 Textbook: 

Mitchell. “Concepts in Programming Languages.” (Fifth Edition)

 Harbison, Steele. “C: A Reference Manual.”

(5th edition)

 Occasional assigned readings

•slid

e 3



Syllabus

 Review of fundamental concepts underlying contemporary programming 

languages

 Goal: understand paradigms of programming languages 

 Examples drawn from C, C++, C#, Java, Scheme, Python, PhP

 Procedural 

 Functional

 Data-oriented

 Object-oriented

 Script 

 Concurrent

•slid

e 4



Course Goals

 Language as an outline for problem-solving

 Understand the languages so as to having a fair comparison

 History of the state-of-the-art programming languages 

 Be prepared for new programming languages,  paradigms and tools

 Language tradeoffs

 Every suitability has its cost

 Recognize the cost of presenting an abstract view of machine

 Understand tradeoffs based on language design

•slid

e 5



•slid

e 6

What’s Worth Studying?  

 Popular languages and standards

 C, C#, C++, Java and Python

 Imperative and object-oriented languages

 Important application ideas

 Performance challenges

 Concurrency

 Design tradeoffs

 Concepts that research community is exploring for new programming 

languages and tools



•slid

e 7

Languages in Common Use

[F. Labelle]

Based on open-source projects at SourceForge



Flon’s Axiom

•slid

e 8

“There is not now, nor has there ever been, 
nor will there ever be, 
any programming language in which 
it is the least bit difficult to write bad code.”

- Lawrence Flon 



Latest Issues 

 Commercial issues 

 Increasing use of type-safe languages: Java, C#, … 

 Scripting and other languages for Web based applications

 Scripting languages for AI and Robotics (Python)

 Teaching trends: Java and C# replacing C++

 Research and development issues

 Modularity

 Program analysis

 Automated error detection, programming environments, compilation

 Isolation and security

 Sandboxing, language-based security,  …

•slid

e 9



Support for Abstraction

 Data

 Pre-defined types and classes

 Class libraries

 Procedural

 Pre-defined functions

 Standard libraries

•slid

e 10



Reliability

 Program behavior is the same on different platforms

 E.g., early versions of Fortran

 Type errors are detected

 E.g., Semantic errors are properly trapped

 E.g., C vs. C++

 Memory leaks are prevented

 E.g., C# vs. Java

 Pointers are unreliable

 E.g., C++, C

•slid

e 11



Orthogonality

 Orthogonality in a programming language means that a 

relatively small set of primitive constructs can be 

combined in a relatively small number of ways to build 

the control and data structures of the language.

•slid

e 12



Efficient Implementation

 Embedded systems

 Real-time response (drones)

 Failures of early Ada implementations

 Web applications

 Responsiveness to users (e.g., Yandex search)

 Corporate database applications

 Efficient search and updating

 AI applications

 Mimicking human behaviors

•slid

e 13


