Classes

Reference Book: “The C++ Programming Language”, Bjarne Stroustrup.

Structure

struct Date |
int d, m, y;
void init(int dd, int mm, int yy); [/ inifiglize
void add year (inf n); // add n years
void add_month (int n) ; [/ add n months
void add _day (int n); [/ add n days

Reference Book: “The C++ Programming Language”, Bjarne Stroustrup.

Date my_birthday ;

void f()
{

Date today ;

today .init (16,10, 1996) ;
my_birthday . init (30,12 ,1950) ;

Date tomorrow = today ;
tomorrow .add_day (1) ;

FE s

Reference Book: “The C++ Programming Language”, Bjarne Stroustrup.

void Date::init(int dd, int mm, int yy)

{
dd ;

d=dd;
m=mm;
y =)y

when Date::init () is invoked for foday, m=mm assigns to foday.m.
when Date::init () is invoked for my_birthday. m=mm assigns to my_birthday .m.

Reference Book: “The C++ Programming Language”, Bjarne Stroustrup.

Classes

class Date |

int d, m, y;

public
void init(int dd, int mm, int yy); // inifialize
void add_year (int n); /{ add n years
void add_month (int n) ; [/ add n months
void add _day (int n); // add n days

The public label separates the class body into two parts. The names in the first. private. part can be
used only by member functions. The second. public. part constitutes the public interface to objects

of the class. A sfruct is simply a class whose members are public by default
functions can be defined and used exactly as before.

Reference Book: “The C++ Programming Language”, Bjarne Stroustrup.

class Date |

int d, m, y;

public :
void init(int dd, int mm, int yy); // inifialize
void add_year (int n); // add n years
void add_month (int n) ; [/ add n months
void add_day (int n); // add n days

inline void Date::add year (int n)

{

void timewarp (Dates d)

{

d.y -=200; // error: Date::y is private

Reference Book: “The C++ Programming Language”, Bjarne Stroustrup.

Constructors

The use of functions such as imif () to provide initialization for class objects is inelegant and error-
prone. Because it is nowhere stated that an object must be initialized. a programmer can forget to
do so — or do so twice (often with equally disastrous results). A better approach is to allow the pro-
grammer to declare a function with the explicit purpose of initializing objects. Because such a
function constructs values of a given type. it is called a constructor. A constructor 1s recognized by
having the same name as the class itself. For example:

class Date {

fiini

Date (int, int, int) ; /[constructor

Reference Book: “The C++ Programming Language”, Bjarne Stroustrup.

It is often nice to provide several ways of initializing a class object. This can be done by providing

several constructors. For EKEIlllplEZ

class Date {

intd, m, y;
public:
Kl
Date (int, int, int): // day, month, year
Date (int, int); // day, month, today’s year
Date (int) : // day, today’s month and year
Date () ; // default Date: today
Date (const char*); // date in string representation

Reference Book: “The C++ Programming Language”, Bjarne Stroustrup.

Static members

A wvariable that is part of a class. yet is not part of an object of that class. is called a
static member. There is exactlvy one copy of a sfafic member instead of one copy per object. as for
ordinary non-static members. Similarly. a function that needs access to members of a class. yet
doesn’t need to be invoked for a particular object. is called a stafic member function.

class Date {
intd, m,y;
static Date default_date;

public -
Date (int dd =0, int mm =0, int yy =0);
T
static void set default (int, int, int);
)z
Date: : Date (int dd, int mm, int yy)
{
d=dd ? dd : default_date.d;
m=mm ? mm : default_date.m;
y=yy ?yy : default_date.y;
[/ check that the Date is valid
}

Reference Book: “The C++ Programming Language”, Bjarne Stroustrup.

We can change the default date when appropriate. A static member can be referred to like any
other member. In addition. a static member can be referred to without mentioning an object.
Instead. its name is qualified by the name of its class. For example:

void f()
{

}

Date : :set_default (4,5, 1945) ;

Reference Book: “The C++ Programming Language”, Bjarne Stroustrup.

Static members — both function and data members — must be defined somewhere. For example:
Date Date::default_date (16,12,1770) ;

void Date::set_default(int d, int m, int y)

{
)

Now the default value is Beethoven’s birth date — until someone decides otherwise.

Date: :default _date = Date (d, m,y);

Reference Book: “The C++ Programming Language”, Bjarne Stroustrup.

Constant member functions

The Date defined so far provides member functions for giving a Date a value and changing if.
Unfortunately. we didn’t provide a way of examining the value of a Dafe. This problem can easily
be remedied by adding functions for reading the day. month. and year:

class Date |
intd, m, y;

public :
int day () const { return d; |}
int month () const { return m; }
int year () const;
I

}:

Note the const after the (empty) argument list in the function declarations. It indicates that these
functions do not modify the state of a Date.

Reference Book: “The C++ Programming Language”, Bjarne Stroustrup.

Naturally. the compiler will catch accidental attempts to violate this promise. For example:

inline int Date::year () const

{
}

return y++; // error: attempt to change member value in const function

When a const member function is defined outside its class. the const suffix is required:

inline int Date::year () const I/ correct
refurn y;

inline int Date::year() [/ error: const missing in member function type
refurn y;

Reference Book: “The C++ Programming Language”, Bjarne Stroustrup.

A const member function can be invoked for both const and non-const objects, whereas a non-
const member function can be invoked only for non-const objects. For example:

void f(Dates d, const Date& cd)

{
int i=d.year(); /] ok

d.add_year(1I); [/l ok

int j=cd.year(); !/ ok
cd.add year(1); [/ error: cannot change value of const cd

Reference Book: “The C++ Programming Language”, Bjarne Stroustrup.

Self Reference

class Date |

-

Dates add_year (int n); [/ add n years
Dates add_month (int n); // add n months

Dates add_day (int n); // add n days
}i

Each (nonstatic) member function knows what object it was invoked for and can explictly refer to
it. For example:

Dates Date : : add_year (int n)

{
if (d==29 && m==2 && !leapyear (y+n)) { // beware of February 29

d=1;
m=23:;

}

y+=n;
return *this;

}

The expression *fhis refers to the object for which a member function is invoked.

Reference Book: “The C++ Programming Language”, Bjarne Stroustrup.

Most uses of this are implicit. In particular. every reference to a nonstatic member from within
a class relies on an implicit use of this to get the member of the appropriate object. For example.
the add_year function could equivalently. but tediously. have been defined like this:

Dates Date : : add_year (int n)

{
if (this->d==20 && this- >m==2 && !leapyear (this->y+n)) |
this-=d = 1;
this-=m = 3;
}
this-=y +=n;
refurn *this;
}

Reference Book: “The C++ Programming Language”, Bjarne Stroustrup.

Structures and Classes

By definition, a sfruct is a class in which members are by default public: that is.

struct 5 { ...

1s simply shorthand for

class s { public: ...

Reference Book: “The C++ Programming Language”, Bjarne Stroustrup.

The access specifier privafe: can be used to say that the members following are private. just as
public : says that the members following are public. Except for the different names. the following

declarations are equivalent:

class Datel {
int d, m, y;

public:
Datel (int dd, int mm, int yy);

void add_year (int n); // add n years

i
struct Date? |

private :
int d, m, y;

public -
Date2 (int dd, int mm, int yy);

void add_year (int n); // add n years

bi

Which style you use depends on circumstances and taste. I usually prefer to use struet for classes
that have all data public. I think of such classes as “‘not quite proper types, just data structures.”

Reference Book: “The C++ Programming Language”, Bjarne Stroustrup.

It 1s not a requirement to declare data first in a class. In fact. it often makes sense to place data
members last to emphasize the functions providing the public user interface. For example:

class Date3 |
public :
Date3 (int dd, int mm, int yy);

void add_year (int n); [/ add n years
private:

intd, m, y;
}i

Reference Book: “The C++ Programming Language”, Bjarne Stroustrup.

class Dated |

public

Date4 (int dd, int mm, int yy);
private :

int d, m, y;
public :

void add _year (int n); // add n vears

ks

Reference Book: “The C++ Programming Language”, Bjarne Stroustrup.

In-Class function definitions

class Date { // potentially confusing

public
int day () const { return d; } // return Date::d
. A

private :
intd, m, y;

i

This is perfectly good C+— code because a member function declared within a class can refer to
every member of the class as if the class were completely defined before the member function bod-
ies were considered. However. this can confuse human readers.

class Date |
public:
int day () const;

/.

private:
intd, m, y;
s

inline int Date::day () const { return d; }

Reference Book: “The C++ Programming Language”, Bjarne Stroustrup.

Destructors

A constructor initializes an object. In other words. it creates the environment in which the member
functions operate. Sometimes. creating that environment involves acquiring a resource — such as a
file. a lock. or some memory — that must be released after use (§14.4.7). Thus. some classes need a
function that is guaranteed to be invoked when an object is destroved in a manner similar to the
way a constructor is guaranteed to be invoked when an object is created. Inevitably. such functions

are called desfructors. They typically clean up and release resources. Destructors are called
implicitly when an automatic variable goes out of scope. an object on the free store is deleted, etc.

Reference Book: “The C++ Programming Language”, Bjarne Stroustrup.

The most common use of a destructor is to release memory acquired in a constructor. Consider
a simple table of elements of some type Name. The constructor for Table must allocate memory to
hold the elements. When the table is somehow deleted. we must ensure that this memory is
reclaimed for further use elsewhere. We do this by providing a special function to complement the
constructor:

class Name {
const char* s;

i
}:
class Table {
Name* p;
size_ t 52;
public :
Table (size_t s = 15) { p = new Name [sz =s]; }// constructor
~Table() { delete[] p; } /[destructor
Name* lookup (const char *);
bool insert (Name*) ;
}i

Reference Book: “The C++ Programming Language”, Bjarne Stroustrup.

Default Constructors

Because consts and references must be initialized (§5.5. §5.4). a class containing const or refer-
ence members cannot be default-constructed unless the programmer explicitly supplies a construc-
tor (§10.4.6.1). For example:

struct X {
const int a;
const Imt&r:

ks

X x; // error: no default constructor for X

Reference Book: “The C++ Programming Language”, Bjarne Stroustrup.

Construction and Destruction

Consider the different ways an object can be created and how it gets destroyed afterwards.
object can be created as:

A named automatic object, which 1s created each time its declaration is encountered
in the execution of the program and destroyed each time the program exits the block
in which it occurs

A free-store object. which is created using the new operator and destroyed using the
delete operator

A nonstatic member object. which is created as a member of another class object and
created and destroyved when the object of which it is a member is created and
destroyed

An array element. which is created and destroyed when the array of which it is an ele-
ment is created and destroyed

A local static object. which is created the first time its declaration is encountered in
the execution of the program and destroyed once at the termination of the program

A global. namespace. or class static object. which is created once “*at the start of the
program’’ and destroved once at the termination of the program

A temporary object. which is created as part of the evaluation of an expression and
destroyed at the end of the full expression in which it occurs

Reference Book: “The C++ Programming Language”, Bjarne Stroustrup.

Local Variables

The constructor for a local variable is executed each time the thread of control passes through the
declaration of the local variable. The destructor for a local variable is executed each time the local
variable’s block 1s exited. Destructors for local variables are executed in reverse order of their con-
struction. For example:

void f(int 1)
{

Table aa:

Table bb;

if (i=0) {
Table cc:
B

}
Table dd;

filine

Reference Book: “The C++ Programming Language”, Bjarne Stroustrup.

Copying Objects

If t1I and t2 are objects of a class Table. 12=tI by default means a memberwise copy of £1 into £2
(§10.2.5). Having assignment interpreted this way can cause a surprising (and usually undesired)
effect when used on objects of a class with pointer members. Memberwise copy is usually the
wrong semantics for copying objects containing resources managed by a constructor/destructor
pair. For example:

void h()
{
Table t1;
Table t2 =t1; [/ copy initialization: trouble
Table t3;
13.= 2 /{ copy assignment: trouble
}

Here. the Table default constiuctor is called twice: once each for ¢ and f3. It is not called for £2
because that variable was initialized by copying. However. the Table destiuctor is called three
times: once each for £1. 2. and £3! The default interpretation of assignment is memberwise copy. so
t1. t2, and t3 will. at the end of h (). each contain a pointer to the array of names allocated on the
free store when f1 was created.

Reference Book: “The C++ Programming Language”, Bjarne Stroustrup.

Such anomalies can be avoided by defining what it means to copy a Table:

class Table {

[..
Table (const Tables) ; /{ copy constructor
Tables operator= (const Tables) ; /[copy assignment
};
Table: : Table (const Tables t) // copy constructor
{
p = new Name [sz=t.5zZ] ;
for (int 1 =0; i<sz; i++) plil =t.plil;
}
Tables Table: : operator= (const Tables: 1) // assignment
{
if (this |=&t) { /[beware of self-assignment: t =t
delete [] p;
P = new Name [sz=t.5z];
for (int 1 =0; i<sz; i++) pli]l = t.plil;
}
return *this :
}

Reference Book: “The C++ Programming Language”, Bjarne Stroustrup.

