
Data Types

Prof.Dr. Bahadır AKTUĞ

BME362 Introduction to Python

*Compiled from sources given in the references.



Prof. Dr. Bahadır AKTUĞ – BME362 Introduction to Python

Statically vs. Dynamically Typed Languages

• In statically typed languages, the variables have to be
defined before they are used (C/C++/Pascal etc.).

• In statically typed languages, a variable can only have
one type that cannot be changed during the program
execution.

• In a dynamically typed languages, the variables do not
have to be defined before they are assigned.

• In a dynamically typed language, the variables can
change their type during the runtime.

• For instance, while variable is an integer at the
beginning of a program and then it can be string at the
end.

• Python is a dynamicaly typed programming language.



Prof. Dr. Bahadır AKTUĞ – BME362 Introduction to Python

Strongly vs. Weakly Typed Languages

• In strongly typed languages, the operators take the
type of each operand into account and a check called
"type safety" is applied (C/C++/Pascal etc.).
• a = "Python"
• a=1457
• a = input()
• print(int(a))

• In a strongly typed language, you cannot add a number
to a string or vice versa.

• In a weakly typed language, the usage of the different
data types are flexible (Perl, Javascript).

• Python is a strongly typed programming language.



Prof. Dr. Bahadır AKTUĞ – BME362 Introduction to Python

Python Variable Names
• The naming convention with Python 3 has been made

quite flexible.
• The variable naming restrictions in Python 3 can be

summarized as below:
• The first character of a variable name must be

either a letter (lowercase or uppercase) or "_"
• The letter could be Unicode
• Any letter or number can follow after the first

character.



Prof. Dr. Bahadır AKTUĞ – BME362 Introduction to Python

Python Variable Names

• Python is a "case sensitive" language. This also
applies to variable as well as commands, functions
etc.

• The variable names cannot be chosen from the
reserved word list below (they are python
commands!)
• and, as, assert, break, class, continue, def, del,

elif, else, except, False, finally, for, from,
global, if, import, in, is, lambda, None,
nonlocal, not, or, pass, raise, return, True, try,
while, with, yield



Prof. Dr. Bahadır AKTUĞ – BME362 Introduction to Python

Numbers in Python

Integers

 Decimals (numbers on base 10)

 Octals (numbers in base 8): (they must have "0" and "o")

>>> a = 0o20

>>> print(a)

>>> 16

 Hexadecimals (numbers on base 16): (they must have "0" and "x/X")

>>> a = 0x10

>>> print(a)

>>> 16

 Binaries (numbers on base 2): (they must have "0" and "b/B")

 a = 0b110

>>> print(a)

>>> 6



Prof. Dr. Bahadır AKTUĞ – BME362 Introduction to Python

Conversion to a different base

 Decimal numbers can be converted to other bases:

 From decimal to octal (base 8):

>>> a = 16

>>> print(oct(a))

>>> '0x20' (note that it is converted as a string)

 From decimal to base 16:

 >>> a = 16

>>> print(hex(a))

>>> '0x10' (note that it is converted as a string)

 From decimal to base 2:

 >>> a = 16

>>> print(bin(a))

>>> '0b10000' (note that it is converted as a string)



Prof. Dr. Bahadır AKTUĞ – BME362 Introduction to Python

Numbers in Python

Integers

 There is no limit for integers:

>>> x = 787366098712738903245678234782358292837498729182728

>>> x * x * x 

48812397007063821598677016210573131553882758609194861799787112295022889

11239609019183086182863115232822393137082755897871230053171489685697978

75581092352

Floating Numbers

>>> a = 14.56

>>> a = 2.4583e-8

Complex Numbers

 Complex numbers can directly be used in Python.

>>> a = 3 – 5j

>>> b = 4 +7j

>>> a+b



Prof. Dr. Bahadır AKTUĞ – BME362 Introduction to Python

• There is a need for "string" type to express a sequence of

characters (letters, alphanumeric, even numbers, special

characters etc).

• ASCII coding allows defining 256 (28) different characters.

• However, there are far more letters and symbols than can be

accomodated by ASCII.Thus, Unicode standard was established.

• Unicode uses a 4-byte representation instead of ASCII's 1 byte

representation of characters.

• 4-byte representation of Unicode allows (28)4 > 4 million different

characters.

• Since Unicode's 4 byte representation (character mapping)

allocates 4-bytes even for characters where 1 byte is sufficient,

different Unicode Codings were developed (UF-8, UTF-16 ve

UTF-32)

String type



Prof. Dr. Bahadır AKTUĞ – BME362 Introduction to Python

• The string are defined as Unicode in Python without any coding.

• The string types can be defined with a single or double quote:

>>> a = 'EEE105'

>>> a = "EEE105"

• If the character sequence to be assigned to a string variable

already contains a single/double quote, a backslash (\) should be

used before it. If the string variable is defined with a single quote,

the quote inside could de double or vice versa.

>>> a = 'EEE105\'s content'

>>> a = "EEE105\"s content"

• There is also a triple quote in Python which is used to define a

multiline comment.

String type in Python



Prof. Dr. Bahadır AKTUĞ – BME362 Introduction to Python

• A single character of a string variable in Python can be directly

accesed with indexing.

>>> s = 'Hello World'

>>> s[0]

>>> 'H'

• The last characters can be accessed by using either of the

following methods:

>>> s[len(s)-1]

>>> 'd'

>>> s[-1]

>>> 'd'

String type in Python



Prof. Dr. Bahadır AKTUĞ – BME362 Introduction to Python

Concatenation:

• String concatenation is done by using operator "+":

>>> a = 'EEE105'

>>> b = " Computer Programming I"

>>> a+b

>>> 'EEE105 Computer Programming'

Repetition:

• A repetition of string is done using operator "*":

>>> a = 'AB'

>>> 3*a

>>> 'ABABAB'

String type in Python



Prof. Dr. Bahadır AKTUĞ – BME362 Introduction to Python

Indexing:

• Indexing in Python is done through operator "[]".

• Python allows for negative indexing.
>>> a = 'AB'

>>> a[1]

>>> 'B'

>>> a[0]

>>> 'A'

>>> a[-1]

>>> 'B'

>>> a[-6]

>>> 'A'

>>> a[-7]

>>> Hata mesajı

String type in Python

*After reaching the start 
of the variable it does
not go back!

*Indexing starts from 0!



Prof. Dr. Bahadır AKTUĞ – BME362 Introduction to Python

Slicing:

• Slicing in Python is done through operators "[:]"

• The start/end indices take place on the left and right side of ":"
>>> a = 'Ankara'

>>> a[3:5]

>>> 'ar'

• The start/end indices can be left blank. In this case, it means from
the start/to the end:

>>> a[:4]

>>> 'Anka'

>>> a[4:]

>>> 'ra'

String type in Python

*Dilimlemelerin 
indisleme gibi 0'dan 
başladığına
ve de ikinci dilim 
indisinin dilime dahil 
olmadığına dikkat 
ediniz.



Prof. Dr. Bahadır AKTUĞ – BME362 Introduction to Python

Size & Length:

• The find the length of a string, len() function is used.

• "len" function gives the number of characters.

• "space" counts.

• To access the last character in a string variable a, the indexing
a[len(a)-1] can be used.

>>> a = 'Ankara'

>>> len(a)

>>> 6

>>> a = 'Ankara İstanbul'

>>> len(a)

>>> 15

String type in Python



Prof. Dr. Bahadır AKTUĞ – BME362 Introduction to Python

• Mutable and Immutable variables are closely related to the
concepts of "call by value" and "call by reference" which are also
examined in the chapter about functions.

• In short, the string data type in Python is an immutable type. This
means that the letters of a string cannot be modified by usual
assignment.

>>> a = 'Ankara'

>>> a[0] = 'O'

error message …..

Mutable and Immutable Variables

*it tries to change the string to "Onkara"



Prof. Dr. Bahadır AKTUĞ – BME362 Introduction to Python

• Almost anything in Python is an object and is kept in at a specific
memory address. The content (value) of variables can be
compared with the operator "==". But to check whether they are
point at the same memory address, "is" operator is used:

>>> a = 'Ankara'; b = "Ankara"
>>> a == b
>>> True
>>> a is b
>>> True
>>> a = 'Med-Cezir'
>>> b = "Med-Cezir"
>>> a == b
>>> True
>>> a is b
>>> False

How is a string variable kept in the

memory?

*They are pointing at the same
object (the same memory
address). Their contents are the
same

*They are not pointing at the
same object (the same memory
address). Their contents are the
same



Prof. Dr. Bahadır AKTUĞ – BME362 Introduction to Python

Escape Sequences:

• String variables can
contain special
characters.

• They must have
operator "\" to
discriminate them
against the usual
characters.

String Variables in Python



Prof. Dr. Bahadır AKTUĞ – BME362 Introduction to Python

Variable Assignment

 The assignment operator is "=" as is in many
programming languages.

 Python is a dynamicaly typed language. The content of the
variable (its value) determines the data type. 

 The very same variable can have different data types
within the same code block.

 On the other hand, Python is a strongly typed language. 
Once the type is determined depending on the content, 
the operators should be compatible.

>>> a = "Gölbaşı"

>>> a = 27e12

>>> a = 1451 * 2321



Prof. Dr. Bahadır AKTUĞ – BME362 Introduction to Python

Variable Assignment
 When we take into account that all the variables in Python are actually

objects, caution should be exercised while assigning variables to one
another.

 When we assign a value to a variable, a chunk of memory is allocated and
an address of memory is assigned.

 When we assign variables to each other, only the memory address is 
assigned not their values. 

 Unless delibaretly done, such phenomenon could have disastrous results. 
When the content of the assigned variable is modified, it also effects the
first variable content.

 Python handles such a situation by assigning a new address during each
value assignment.

>>> a = [2,4,5]

>>> b = a

>>> b[0] = 1

>>> a

>>> [1,4,5]



Prof. Dr. Bahadır AKTUĞ – BME362 Introduction to Python

 References

1 Wentworth, P., Elkner, J., Downey, A.B., Meyers, C. (2014). How to Think Like a Computer Scientist: Learning with Python (3nd edition).

2 Pilgrim, M. (2014). Dive into Python 3 by. Free online version: DiveIntoPython3.org ISBN: 978-1430224150.

3 Summerfield, M. (2014) Programming in Python 3 2nd ed (PIP3) : - Addison Wesley ISBN: 0-321-68056-1.

4 Summerfield, M. (2014) Programming in Python 3 2nd ed (PIP3) : - Addison Wesley ISBN: 0-321-68056-1.

5 Jones E, Oliphant E, Peterson P, et al. SciPy: Open Source Scientific Tools for Python, 2001-, http://www.scipy.org/.

6 Millman, K.J., Aivazis, M. (2011). Python for Scientists and Engineers, Computing in Science & Engineering, 13, 9-12.

7 John D. Hunter (2007). Matplotlib: A 2D Graphics Environment, Computing in Science & Engineering, 9, 90-95.

8 Travis E. Oliphant (2007). Python for Scientific Computing, Computing in Science & Engineering, 9, 10-20.

9 Goodrich, M.T., Tamassia, R., Goldwasser, M.H. (2013). Data Structures and Algorithms in Python, Wiley.

10 http://www.diveintopython.net/

11 https://docs.python.org/3/tutorial/

12 http://www.python-course.eu

13 https://developers.google.com/edu/python/

14 http://learnpythonthehardway.org/book/


