
Sequential Data Types

Prof.Dr. Bahadır AKTUĞ

BME362 Introduction To Python

*Compiled from sources given in the references.

Prof. Dr. Bahadır AKTUĞ – BME362 Introduction To Python

Sequential Data Types

• Sequential data types are needed in programming

at any scale.

• Python provides six sequential data types:

• strings

• byte sequence

• byte arrays

• list

• tuple

• range object

• While these data seem to be quite different at first

sight, they have one important common feature:

they hold data sequentially.

Prof. Dr. Bahadır AKTUĞ – BME362 Introduction To Python

Sequential Data Types

• The elements of a sequential data type can be

accessed with indexing.

• Remember the indexing we use to access

characters in a string type variable:
>>> s = "Programming with Python"

>>> print(s[0], s[17])

PP

• Accessing the elements of a list with indexing:
>>> l = ["Ankara", "İstanbul", "İzmir", "Adana"]

>>> print(l[1], l[2])

İstanbul İzmir

Prof. Dr. Bahadır AKTUĞ – BME362 Introduction To Python

Sequential Data Types

• There are also functions defined for sequential

data types. In Python, such functions are common

to all sequential data types (string, list, tuple etc.).

• For instance, the length of a sequential data type

can retreived by using "len()" function:

>>> s = "Programming with Python"

>>> l = ["Ankara", "İstanbul", "İzmir", "Adana"]

>>> print(len(s),len(l))

23 4

Prof. Dr. Bahadır AKTUĞ – BME362 Introduction To Python

Lists

• In general, "lists" can be considered similar to the

arrays in C, C++, Java and Matlab.

• However, "lists" in Python are much more powerful

and flexible with respect to the "arrays" in classical

programming languages.

• For one thing, the elements of a "list" does not have

to be of the same data type (integer, string, float etc.).

• Lists can be expanded/shrinked during runtime. In

static arrays, the dimension is constant during run

time.

• The lists in Python are an array of sequential objects.

Those objects could be any data type including other

lists.

Prof. Dr. Bahadır AKTUĞ – BME362 Introduction To Python

Lists

• Some feature of lists in Python:

• The elements take place sequentially

• The elements could be of any data type

• The access to the elements of a list is done

through indexing

• Lists, lists including other lists (any nested

object) could the elements of a list

• The dimension is not constant

• Lists are of mutable data type

Prof. Dr. Bahadır AKTUĞ – BME362 Introduction To Python

Lists

Definition Description

[] empty list

[1,1,2,3,5,8] a list of integers

[42, "JFM212", 3.1415] a list of various data types

["Ankara", "Adana", "Bursa", "İzmir", "Gaziantep",

"Antalya","Konya", "Samsun"]

a list of strings

[["Ankara","Konya", 7556900], ["New

York","Londra",2193031], ["Antalya", "Samsun",

123466]]

a list containing lists as elements

["İller", ["ilçeler", ["beldeler", ["köyler",

"mezralar", 1021]]]]

a nested list

Some examples of lists in Python:

Prof. Dr. Bahadır AKTUĞ – BME362 Introduction To Python

Lists

• Access to the elements and sub-elements of a list:

• Indexing is used to access to the elements.

• If the element accessed is also a list, an additional

indexing can be used.

>>> bilgi = [["Ali","Demir"],[[["Atatürk Cad.", "24"],

"06100"],"Ankara"]]

>>> print(bilgi[0])

['Ali','Demir']

>>> print(bilgi[0][1])

Demir

>>> print(bilgi[1][0][1])

06100

Prof. Dr. Bahadır AKTUĞ – BME362 Introduction To Python

Tuples

• A tuple is an "immutable" data type.

• The tuples are defined similar to lists but "()" is

used instead of "[]".

• The access to the elements is similar to that of

lists.

• The advantages of tuple over lists:

• Tuples are in general faster to process

• Minimizes the programming bugs since they are

immutable

• Tuples as immutable types can be used as "keys"

in "dictionary" data type.

Prof. Dr. Bahadır AKTUĞ – BME362 Introduction To Python

Tuples

>>> t = ("Lists", "and", "tuples")

>>> t[0]

'Lists'

>>> t[1:3]

('and', 'tuples')

>>> t[0]="new value"

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

• The elements of a tuple cannot be changed

• "Slicing" is similar to that of lists

Prof. Dr. Bahadır AKTUĞ – BME362 Introduction To Python

Concatenation and Repetition in Sequential

Data Types

• Sequential data types in Python can be concatenated

with "+" operator like we in strings:

>>> a = [1,2,5,4]

>>> b = [8,14,9]

>>> c = [45,10,6]

>>> a + b + c

[1, 2, 5, 4, 8, 14, 9, 45, 10, 6]

• Similarly, repetition is done through "*" operator

>>> a*4

[1, 2, 5, 4, 1, 2, 5, 4, 1, 2, 5, 4, 1, 2, 5, 4]

Prof. Dr. Bahadır AKTUĞ – BME362 Introduction To Python

Checking the presence of a specific element

in sequential data types

• To check whether an element is contained in a

sequential data type, "in" keyword/operator can be

used:

>>> a = [1,2,5,4]

>>> 2 in a

True

>>> 7 not in a

True

>>> b = ("Ankara","İzmir","İstanbul")

>>> 'Ankara' in b

True

>>> 'Adana' not in b

True

Prof. Dr. Bahadır AKTUĞ – BME362 Introduction To Python

Shallow/Deep Copy Operations in Sequential Data

Types

• When a new value is assigned to a variable, instead of
modifying the data at the current memory address, a
memory address is assigned to the variable and data is
placed at the new memory address.

>>> x = 3

>>> y = x

>>> print(id(x), id(y))

1616756784 1616756784

>>> y = 4

>>> print(id(x), id(y))

1616756784 1616756800

>>> print(x,y)

3 4

Prof. Dr. Bahadır AKTUĞ – BME362 Introduction To Python

Shallow/Deep Copy Operations in Sequential Data

Types

• Such phenomenon is also valid for sequential data

types.

>>> colors = ["red","blue","green"]

>>> colors2 = colors

>>> print(id(colors),id(colors2))

4317096 4317096

>>> colors2 = ["orange","brown"]

>>> print(colors,colors2)

['red', 'blue', 'green'] ['orange', 'brown']

>>> print(id(colors),id(colors2))

4317096 33918808

A new memory address is

assigned!

Prof. Dr. Bahadır AKTUĞ – BME362 Introduction To Python

Shallow/Deep Copy Operations in Sequential Data

Types

• Such phenomenon is also valid for sequential data

types.

>>> colors = ["red","blue","green"]

>>> colors2 = colors

>>> print(id(colors),id(colors2))

4317096 4317096

>>> colors2[0] = "orange"

>>> print(colors,colors2)

['orange', 'blue', 'green'] ['orange', ‘blue’,’green’]

>>> print(id(colors),id(colors2))

4317096 4317096

They have

the same

memory

address!

The

elements of

variable

"colors" is

also

changed!

Prof. Dr. Bahadır AKTUĞ – BME362 Introduction To Python

Shallow/Deep Copy Operations in Sequential Data

Types

• To overcome such problems a special "copying"
operation is needed. One such method is the "shallow
copy"

>>> colors = ["red","blue","green"]

>>> colors2 = colors[:]

>>> print(id(colors),id(colors2))

2678696 10456760

>>> colors2[0] = "orange"

>>> print(colors,colors2)

['red', 'blue', 'green'] ['orange', 'blue', 'green']

Slicing operator!

(shallow copy)

Instead of sharing
a common
memory address,
a new memory
address is
assigned to the
second variable!

Prof. Dr. Bahadır AKTUĞ – BME362 Introduction To Python

Shallow/Deep Copy Operations in Sequential Data

Types

• If the sequential type already contains another
sequential type, even the shallow copy is not sufficient:

>>> colors = [["red","blue"],"green"]

>>> colors2 = colors[:]

>>> print(id(colors),id(colors2))

10473840 2678696

>>> colors2[0][0] = "orange"

>>> print(colors,colors2)

[['orange', 'blue'], 'green'] [['orange', 'blue'], 'green']

The element of the variable "colors"

is also changed!

Different

addresses are

assigned!

Prof. Dr. Bahadır AKTUĞ – BME362 Introduction To Python

Shallow/Deep Copy Operations in Sequential Data

Types

• If the sequential type already contains another
sequential type, a "deep copy" operation is needed.

• To perform a deep copy, deepcopy function from
"deepcopy" module is imported.

>>> from copy import deepcopy

>>> colors = [["red","blue"],"green"]

>>> colors2 = deepcopy(colors)

>>> colors2[0][0] = "orange"

>>> print(orange,orange2)

[['red', 'blue'], 'green'] [['orange', 'blue'], 'green']

Prof. Dr. Bahadır AKTUĞ – BME362 Introduction To Python

 References

1 Wentworth, P., Elkner, J., Downey, A.B., Meyers, C. (2014). How to Think Like a Computer Scientist: Learning with Python (3nd edition).

2 Pilgrim, M. (2014). Dive into Python 3 by. Free online version: DiveIntoPython3.org ISBN: 978-1430224150.

3 Summerfield, M. (2014) Programming in Python 3 2nd ed (PIP3) : - Addison Wesley ISBN: 0-321-68056-1.

4 Summerfield, M. (2014) Programming in Python 3 2nd ed (PIP3) : - Addison Wesley ISBN: 0-321-68056-1.

5 Jones E, Oliphant E, Peterson P, et al. SciPy: Open Source Scientific Tools for Python, 2001-, http://www.scipy.org/.

6 Millman, K.J., Aivazis, M. (2011). Python for Scientists and Engineers, Computing in Science & Engineering, 13, 9-12.

7 John D. Hunter (2007). Matplotlib: A 2D Graphics Environment, Computing in Science & Engineering, 9, 90-95.

8 Travis E. Oliphant (2007). Python for Scientific Computing, Computing in Science & Engineering, 9, 10-20.

9 Goodrich, M.T., Tamassia, R., Goldwasser, M.H. (2013). Data Structures and Algorithms in Python, Wiley.

10 http://www.diveintopython.net/

11 https://docs.python.org/3/tutorial/

12 http://www.python-course.eu

13 https://developers.google.com/edu/python/

14 http://learnpythonthehardway.org/book/

