
Input & Output

Prof.Dr. Bahadır AKTUĞ

BME362 Introduction To Python

*Compiled from sources given in the references.

Prof. Dr. Bahadır AKTUĞ – BME362 Introduction To Pyton

"Reading from"/"Writing to" Console

 Reading from console is done with "input" command
since Python version 3.x.

 For older versions (e.g. 2.7 etc.), the command for
reading from console is "raw_input()".

 General form of the command;

>>> a = input()

 Only one datatype can be read with "input" command:
string. If further arithmetic operations are needed, the
string read with "input" has to be transformed taking the
type of the data into account (integer, float etc.).

 To write to console, "print" command is used. "print" is a
function since Python version 3.0.

Prof. Dr. Bahadır AKTUĞ – BME362 Introduction To Pyton

 File operations in Python are similar to many other

high level languages.

 To read from a file, a file pointer needs to assigned

which points to the physical file on disk and the mode

of operation (read, write, append etc.

>>> fid = open("ogrenci_listesi.txt", "r")

 'r' stands for the reading mode of the file operation.

 The default mode is "reading" if no mode is given.

However, a good practice of programming is to

indicate the mode of operation explicitly.

Reading from file

Prof. Dr. Bahadır AKTUĞ – BME362 Introduction To Pyton

 After opening the file (having an identifer for the file), The

following commands can be used to read from the file:

 read(byte-sayısı)

 readline()

 readlines()

 a = read(n) command reads n byte data from the file and

assigns it to the variable "a".

 a = readline() command reads one line of code from the

file and assigns it to the variable "a".

 a = readlines() command reads all the lines in the file and

assigns it to the variable "a".

Reading from file

Prof. Dr. Bahadır AKTUĞ – BME362 Introduction To Pyton

 File opened with "open()" command should be closed

with "close()" command.

 To close a file the file identifer is needed;

>>> fid.close()

 Another useful command is the "with/as" command.

 If the file is opened with "with/as" command, then the

file is automatically closed at the end.

with open('output.txt', 'w') as f:

f.write('Hi there!')

Reading from file

Prof. Dr. Bahadır AKTUĞ – BME362 Introduction To Pyton

File opening modes
Mode Description

r Opens a file for reading only. The file pointer is placed at the beginning of the file. This is the default mode.

rb Opens a file for reading only in binary format. The file pointer is placed at the beginning of the file. This is the default mode.

r+ Opens a file for both reading and writing. The file pointer placed at the beginning of the file.

rb+ Opens a file for both reading and writing in binary format. The file pointer placed at the beginning of the file.

w Opens a file for writing only. Overwrites the file if the file exists. If the file does not exist, creates a new file for writing.

wb Opens a file for writing only in binary format. Overwrites the file if the file exists. If the file does not exist, creates a new file for

writing.

w+ Opens a file for both writing and reading. Overwrites the existing file if the file exists. If the file does not exist, creates a new file

for reading and writing.

wb+ Opens a file for both writing and reading in binary format. Overwrites the existing file if the file exists. If the file does not exist,

creates a new file for reading and writing.

a Opens a file for appending. The file pointer is at the end of the file if the file exists. That is, the file is in the append mode. If the

file does not exist, it creates a new file for writing.

ab Opens a file for appending in binary format. The file pointer is at the end of the file if the file exists. That is, the file is in the

append mode. If the file does not exist, it creates a new file for writing.

a+ Opens a file for both appending and reading. The file pointer is at the end of the file if the file exists. The file opens in the

append mode. If the file does not exist, it creates a new file for reading and writing.

ab+ Opens a file for both appending and reading in binary format. The file pointer is at the end of the file if the file exists. The file

opens in the append mode. If the file does not exist, it creates a new file for reading and writing.

Prof. Dr. Bahadır AKTUĞ – BME362 Introduction To Pyton

 The command to write to a file is "write() and is used

with the file identifier;

>>> fid.write()

 The "write" command can have the following

parameters;

 writing format

 the variables to write to the file

 The writing format contains the data type of the

variable to be written, number of digits after the

decimal point, total number of digits allocated for

each variable.

Writing to file

Prof. Dr. Bahadır AKTUĞ – BME362 Introduction To Pyton

>>> write("Number: %5d, Price: %8.2f" % (12,54.70))

 Here
 %5d, denotes that an integer with 5 digits will be

used

 %8.2f, denotes that a float number with a total
number of 8 digits (including decimal point and sign)
will be used and 2 of the digits will be after the
decimal point.

 The variable list has to be a tuple.

 "%" operator should not be missed in the
format string.

Formatted Output

Prof. Dr. Bahadır AKTUĞ – BME362 Introduction To Pyton

 If the complete file will be read, for or while
loops can be used:

 with "while";

line = fid.readline()

while line:

line = fid.readline()

print(line)

 with "for";

for line in fid.readlines():

print(line)

Reading all the lines in a file

Prof. Dr. Bahadır AKTUĞ – BME362 Introduction To Pyton

Format string commands
d Signed integer decimal.

i Signed integer decimal.

o Unsigned octal.

u Unsigned decimal.

x Unsigned hexadecimal (lowercase).

X Unsigned hexadecimal (uppercase).

e Floating point exponential format (lowercase).

E Floating point exponential format (uppercase).

f Floating point decimal format.

F Floating point decimal format.

g
Same as "e" if exponent is greater than -4 or less than precision, "f"

otherwise.

G
Same as "E" if exponent is greater than -4 or less than precision, "F"

otherwise.

c Single character (accepts integer or single character string).

r String (converts any python object using repr()).

s String (converts any python object using str()).

% No argument is converted, results in a "%" character in the result.

Prof. Dr. Bahadır AKTUĞ – BME362 Introduction To Pyton

Examples

>>> print("%10.3e"% (356.08977))

3.561e+02

>>> print("%10.3E"% (356.08977))

3.561E+02

>>> print("%10o"% (25))

31

>>> print("%10.3o"% (25))

031

>>> print("%10.5o"% (25))

00031

>>> print("%5x"% (47))

2f

>>> print("%5.4x"% (47))

002f

>>> print("%5.4X"% (47))

002F

>>> print("Only one percentage sign: %% " % ())

%

Prof. Dr. Bahadır AKTUĞ – BME362 Introduction To Pyton

Examples

>>> print("%#5X"% (47))

0X2F

>>> print("%5X"% (47))

2F

>>> print("%#5.4X"% (47))

0X002F

>>> print("%#5o"% (25))

0o31

>>> print("%+d"% (42))

+42

>>> print("% d"% (42))

42

>>> print("%+2d"% (42))

+42

>>> print("% 2d"% (42))

42

>>> print("%2d"% (42))

42

Prof. Dr. Bahadır AKTUĞ – BME362 Introduction To Pyton

Formatting string variables

 Another method is the preparation of string with "format"
command before writing to the screen or to the file.

 For this purpose, the string type variable has "{}" to denote the
formatting of the variables, constants within the string.

>>> "Number: {0:5d}, Unit Price: {1:8.2f} ".format(12,54.70)

 Here

 {0} stands for the first argument, 5d stands for integer
formatting with 5 digits.

 {1} stands for the second argument, 8.2f stands for float
formatting with a total of 8 digits and with 2 of them are
after the decimal point.

 Formatted string can be written as usual.

Prof. Dr. Bahadır AKTUĞ – BME362 Introduction To Pyton

 References

1 Wentworth, P., Elkner, J., Downey, A.B., Meyers, C. (2014). How to Think Like a Computer Scientist: Learning with Python (3nd edition).

2 Pilgrim, M. (2014). Dive into Python 3 by. Free online version: DiveIntoPython3.org ISBN: 978-1430224150.

3 Summerfield, M. (2014) Programming in Python 3 2nd ed (PIP3) : - Addison Wesley ISBN: 0-321-68056-1.

4 Summerfield, M. (2014) Programming in Python 3 2nd ed (PIP3) : - Addison Wesley ISBN: 0-321-68056-1.

5 Jones E, Oliphant E, Peterson P, et al. SciPy: Open Source Scientific Tools for Python, 2001-, http://www.scipy.org/.

6 Millman, K.J., Aivazis, M. (2011). Python for Scientists and Engineers, Computing in Science & Engineering, 13, 9-12.

7 John D. Hunter (2007). Matplotlib: A 2D Graphics Environment, Computing in Science & Engineering, 9, 90-95.

8 Travis E. Oliphant (2007). Python for Scientific Computing, Computing in Science & Engineering, 9, 10-20.

9 Goodrich, M.T., Tamassia, R., Goldwasser, M.H. (2013). Data Structures and Algorithms in Python, Wiley.

10 http://www.diveintopython.net/

11 https://docs.python.org/3/tutorial/

12 http://www.python-course.eu

13 https://developers.google.com/edu/python/

14 http://learnpythonthehardway.org/book/

