Chapter 2: Vectors

PHY0101 and PHY/PEN 101

Assoc. Prof. Dr. Fulya Bağcı

Outline

3.1 Coordinate Systems
3.2 Vector and Scalar Quantities
3.3 Some Properties of Vectors
3.4 Components of a Vector and Unit Vectors
3.5 Scalar Product of Two Vectors
(a later chapter in Serway!)
3.6 Vector Product of Two Vectors
(a later chapter in Serway!)

Coordinate Axes

- Usually, we define a reference frame using a standard coordinate axes. (The choice of reference frame is arbitrary \& up to us!).
- Rectangular or Cartesian Coordinates:
- A point in the plane is denoted as (\mathbf{x}, \mathbf{y}) or $(\mathbf{x}, \mathbf{y}, \mathbf{z})$

Figure 3.1 Designation of points in a Cartesian coordinate system. Every point is labeled with coordinates (x, y).

3.1.1 Cartesian Coordinates

Using Cartesian Coordinates we mark a point by how far along and how far up it is:

3.1.2 Polar Coordinates

Using Polar Coordinates we mark a point by how far away, and what angle it is:

When we know a point in Cartesian Coordinates (x, y) and we want it in Polar Coordinates (r, θ)

$$
\begin{aligned}
& r=\sqrt{x^{2}+y^{2}} \\
& \boldsymbol{\theta}=\boldsymbol{\operatorname { t a n }}^{-\mathbf{1}} \frac{\boldsymbol{y}}{\boldsymbol{x}}
\end{aligned}
$$

Positive $\boldsymbol{\theta}$ is an angle measured counterclockwise from the positive x axis.

Example 3.1 The Cartesian coordinates of a point in the $x y$ plane are $(x, y)=(-3.50,-2.50) \mathrm{m}$, as shown in Figure 3.3. Find the polar coordinates of this point.

$$
\begin{gathered}
r=\sqrt{x^{2}+y^{2}}=\sqrt{(-3.50 \mathrm{~m})^{2}+(-2.50 \mathrm{~m})^{2}}=4.30 \mathrm{~m} \\
\tan \theta=\frac{y}{x}=\frac{-2.50 \mathrm{~m}}{-3.50 \mathrm{~m}}=0.714 \\
\theta=216^{\circ}
\end{gathered}
$$

Scalar quantities

Scalar \equiv A quantity with magnitude only (no

 direction).- Examples of scalar quantities are volume, mass, speed, time intervals, mass, temperature, energy.
- The rules of ordinary arithmetic are used to manipulate scalar quantities.

Vector quantities

$\underline{\text { Vector }} \equiv$ A quantity with magnitude and

 direction.- Examples of vector quantities are displacement, velocity, acceleration, force, momentum.
- Vectors need to account for direction for algebraic operations.

©http://www.phys.ttu.ed u/~cmyles/

Displacement is a vector quantity shown by the arrow drawn from A to B.

A vector quantity can be shown as: \boldsymbol{r} or \boldsymbol{r} The magnitude of a vector: $\left|\begin{array}{l|l}\rightarrow \\ r\end{array}\right|$ or r

The magnitude of a vector is always a positive number.

Equality of two vectors

 2 vectors, $\mathbf{A} \& \mathbf{B}$. $\mathbf{A}=\mathbf{B}$ means that $\mathbf{A} \& \mathbf{B}$ have the same magnitude $\boldsymbol{\&}$ direction.Negativity of a vector

$$
\vec{A} \int \quad-\vec{A}
$$

Vector Addition and Subtraction

- Adding Vectors Geometrically
(i)Adding vectors from head to tail
(ii) Adding vectors by using paralellogram
- Adding Vectors by Using Trigonometry
(i) The vector sum $\vec{C} \quad$... to the head extends from the tail of vector \vec{A}... of vector $\overrightarrow{\boldsymbol{B}}$. \vec{A}

$$
\vec{C}=\vec{A}+\vec{B}
$$

(ii) We can also add two vectors by placing the vectors tail to tail and constructing a paralelogram:

Commutative law of addition

Adding vectors in the opposite order gives the same result. In the example, $\mathbf{D}_{\mathrm{R}}=\mathbf{D}_{1}+\mathbf{D}_{2}=\mathbf{D}_{2}+\mathbf{D}_{1}$

South

Associative law of addition:

When adding three or more vectors, their sum is independent of the way in which the individual vectors are grouped:

$$
\overrightarrow{\mathbf{A}}+(\overrightarrow{\mathbf{B}}+\overrightarrow{\mathbf{C}})=(\overrightarrow{\mathbf{A}}+\overrightarrow{\mathbf{B}})+\overrightarrow{\mathbf{C}}
$$

© Brooks/Cole Thomson 2006 College Physics

Example 3.6 Let's Fly Away!

A commuter airplane takes the route shown in Figure 3.20. First, it flies from the origin of the coordinate system shown to city A, located 175 km in a direction 30.0° north of east. Next, it flies $153 \mathrm{~km} 20.0^{\circ}$ west of north to city B. Finally, it flies 195 km due west to city C. Find the location of city C

relative to the origin.

$$
\begin{aligned}
a_{x} & =a \cos \left(30.0^{\circ}\right)=(175 \mathrm{~km})(0.866)=152 \mathrm{~km} \\
a_{y} & =a \sin \left(30.0^{\circ}\right)=(175 \mathrm{~km})(0.500)=87.5 \mathrm{~km} \\
b_{x} & =b \cos \left(110^{\circ}\right)=(153 \mathrm{~km})(-0.342)=-52.3 \mathrm{~km} \\
b_{y} & =b \sin \left(110^{\circ}\right)=(153 \mathrm{~km})(0.940)=144 \mathrm{~km} \\
c_{x} & =c \cos \left(180^{\circ}\right)=(195 \mathrm{~km})(-1)=-195 \mathrm{~km} \\
c_{y} & =c \sin \left(180^{\circ}\right)=0 \\
R_{x} & =a_{x}+b_{x}+c_{x}=152 \mathrm{~km}-52.3 \mathrm{~km}-195 \mathrm{~km} \\
& =-95.3 \mathrm{~km} \\
R_{y} & =a_{y}+b_{y}+c_{y}=87.5 \mathrm{~km}+144 \mathrm{~km}+0=232 \mathrm{~km}
\end{aligned}
$$

In unit-vector notation,

$$
\vec{R}=-95.3 \hat{\imath}+232 \hat{\jmath} \quad R=250.8 \mathrm{~km}, \theta=-67.7^{\circ}
$$

3.4 Components of a Vector and Unit Vectors

$$
\begin{aligned}
& A_{x}=A \cos \theta \\
& A_{y}=A \sin \theta
\end{aligned}
$$

$$
A=\sqrt{A_{x}^{2}+A_{y}{ }^{2}}
$$

Unit Vectors

- Vector quantities often are expressed in terms of unit vectors.
- A unit vector is a dimensionless vector having a magnitude of exactly 1 .
- Unit vectors are used to specify a given direction and have no other physical significance.

$$
|\hat{\mathbf{i}}|=|\hat{\mathbf{j}}|=|\hat{\mathbf{k}}|=1
$$

Adding Vectors by Using Trigonometry

$$
\begin{gathered}
\overrightarrow{\boldsymbol{A}}=\boldsymbol{A}_{\boldsymbol{x}} \hat{\imath}+\boldsymbol{A}_{\boldsymbol{y}} \hat{\jmath} \\
\overrightarrow{\boldsymbol{B}}=\boldsymbol{B}_{\boldsymbol{x}} \hat{\imath}+\boldsymbol{B}_{\boldsymbol{y}} \hat{\boldsymbol{\jmath}}
\end{gathered}
$$

Example 3.3 The Sum of Two Vectors

Find the sum of two vectors \mathbf{A} and \mathbf{B} lying in the xy plane and given by

$$
\left.\begin{array}{rl}
\mathbf{A} & =(2.0 \hat{\mathbf{i}}+2.0 \hat{\mathbf{j}}) \mathrm{m} \quad \text { and } \quad \mathbf{B}=(2.0 \hat{\mathbf{i}}-4.0 \hat{\mathbf{j}}) \mathrm{m} \\
\mathbf{R} & =\mathbf{A}+\mathbf{B}=(2.0+2.0) \hat{\mathbf{i}} \mathrm{m}+(2.0-4.0) \hat{\mathbf{j}} \mathrm{m} \\
& =(4.0 \hat{\mathbf{i}}-2.0 \hat{\mathbf{j}}) \mathrm{m}
\end{array} \begin{array}{rl}
R & =\sqrt{R_{x}^{2}+R_{y}^{2}}=\sqrt{(4.0 \mathrm{~m})^{2}+(-2.0 \mathrm{~m})^{2}} \\
& =4.5 \mathrm{~m}
\end{array}\right\} \begin{aligned}
\tan \theta & =\frac{R_{y}}{R_{x}}=\frac{-2.0 \mathrm{~m}}{4.0 \mathrm{~m}}=-0.50 \\
\theta & =333^{\circ}
\end{aligned}
$$

Example 3.5 - Taking a Hike

- A hiker begins a trip by first walking 25.0 km southeast from her car. She stops and sets up her tent for the night. On the second day, she walks 40.0 km in a direction 60.0° north of east, at which point she discovers a forest ranger's tower.
(A) Determine the components of the hiker's displacement for each day.
© Brooks/Cole Thomson 2006 College Physics

$$
\begin{aligned}
& A_{x}=A \cos \left(-45.0^{\circ}\right)=(25.0 \mathrm{~km})(0.707)=17.7 \mathrm{~km} \\
& A_{y}=A \sin \left(-45.0^{\circ}\right)=(25.0 \mathrm{~km})(-0.707)=-17.7 \mathrm{~km} \\
& B_{x}=B \cos 60.0^{\circ}=(40.0 \mathrm{~km})(0.500)=20.0 \mathrm{~km} \\
& B_{y}=B \sin 60.0^{\circ}=(40.0 \mathrm{~km})(0.866)=34.6 \mathrm{~km} \\
& \overrightarrow{\mathbf{R}}=\overrightarrow{\mathbf{A}}+\overrightarrow{\mathbf{B}} \\
& \text { The resultant displacement for the trip } \\
& \text { has components given by } \\
& \quad R_{x}=A_{x}+B_{x}=17.7 \mathrm{~km}+20.0 \mathrm{~km}=37.7 \mathrm{~km} \\
& \quad R_{y}=A_{y}+B_{y}=-17.7 \mathrm{~km}+34.6 \mathrm{~km}=16.9 \mathrm{~km}
\end{aligned}
$$

In unit-vector form, we can write the total displacement as

$$
\mathbf{R}=(37.7 \hat{\mathbf{i}}+16.9 \hat{\mathbf{j}}) \mathrm{km}
$$

Multiplication of Vectors (i) Multiplication by a scalar

- A vector \mathbf{V} can be multiplied by a scalar c

$$
\mathbf{V}^{\prime}=\mathbf{c V}
$$

$\mathbf{V}^{\mathbf{\prime}} \equiv$ vector with magnitude $\mathrm{c} \mathbf{V}$ the same direction as \mathbf{V}. If c is negative, the result is in the opposite direction.

(ii) Multiplication of Two Vectors (ii.a) Scalar Product of Two Vectors

- The scalar product of two vectors is written as $\vec{R}=\vec{A} \cdot \vec{B} \quad R=A \cdot B \cdot \cos \theta$
- θ is the angle between A and B when placed tail to tail:

© Hugh D. Young, Roger A. Freedman - University Physics with Modern Physics-Pearson Education (2015)

Scalar Product of Unit Vectors

$$
\begin{aligned}
& \hat{\imath} \cdot \hat{\imath}=\hat{\jmath} \cdot \hat{\jmath}=\hat{\boldsymbol{k}} \cdot \hat{\boldsymbol{k}}=(1)(1) \cos 0^{\circ}=1 \\
& \hat{\imath} \cdot \hat{\jmath}=\hat{\imath} \cdot \hat{\boldsymbol{k}}=\hat{\jmath} \cdot \hat{\boldsymbol{k}}=(1)(1) \cos 90^{\circ}=0
\end{aligned}
$$

Scalar (dot) product of vectors $\overrightarrow{\boldsymbol{A}}$ and $\overrightarrow{\boldsymbol{B}}$

$$
\overrightarrow{\boldsymbol{A}} \cdot \overrightarrow{\boldsymbol{B}}=A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z}
$$

© Hugh D. Young, Roger A. Freedman - University Physics with Modern Physics-Pearson Education (2015)

Example 1.10 in the book University Physics ©

Find the angle between the vectors

$$
\begin{aligned}
& \vec{A}=2 \hat{\imath}+3 \hat{\jmath}+1 \hat{k} \text { and } \vec{B}=-4 \hat{\imath}+2 \hat{\jmath}-1 \hat{k} \\
& \cos \phi=\frac{\overrightarrow{\boldsymbol{A}} \cdot \overrightarrow{\boldsymbol{B}}}{A B}=\frac{A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z}}{A B}
\end{aligned}
$$

$$
\overrightarrow{\boldsymbol{A}} \cdot \overrightarrow{\boldsymbol{B}}=A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z}
$$

$$
=(2.00)(-4.00)+(3.00)(2.00)+(1.00)(-1.00)
$$

$$
=-3.00
$$

$$
\begin{aligned}
A & =\sqrt{A_{x}^{2}+A_{y}^{2}+A_{z}^{2}}=\sqrt{(2.00)^{2}+(3.00)^{2}+(1.00)^{2}} \\
& =\sqrt{14.00} \\
B & =\sqrt{B_{x}^{2}+B_{y}^{2}+B_{z}^{2}}=\sqrt{(-4.00)^{2}+(2.00)^{2}+(-1.00)^{2}} \\
& =\sqrt{21.00} \\
\cos \phi & =\frac{A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z}}{A B}=\frac{-3.00}{\sqrt{14.00} \sqrt{21.00}}=-0.175 \\
\phi & =100^{\circ}
\end{aligned}
$$

(ii.b) Vector Product of Two Vectors

- We denote the vector product of two vectors as
$\vec{C}=\vec{A} \times \vec{B} \quad C=A B \sin \theta$
- As the name suggests, the vector product is itself a vector.
- The vector product is not commutative but instead is anticommutative:

$$
\vec{A} \times \vec{B}=-\vec{B} \times \vec{A}
$$

Using the right-hand rule to find the direction of $\overrightarrow{\boldsymbol{A}} \times \overrightarrow{\boldsymbol{B}}$
(1) Place $\overrightarrow{\boldsymbol{A}}$ and $\overrightarrow{\boldsymbol{B}}$ tail to tail.
$\overrightarrow{\boldsymbol{A}} \times \overrightarrow{\boldsymbol{B}}$
(2) Point fingers of right hand along $\overrightarrow{\boldsymbol{A}}$, with palm facing $\overrightarrow{\boldsymbol{B}}$.
(3) Curl fingers toward $\overrightarrow{\boldsymbol{B}}$.
(4) Thumb points in direction of $\overrightarrow{\boldsymbol{A}} \times \overrightarrow{\boldsymbol{B}}$.

© Hugh D. Young, Roger A. Freedman University Physics with Modern PhysicsPearson Education (2015)

Vector Multiplication of Unit Vectors

$$
\begin{aligned}
& \hat{\imath} \times \hat{\imath}=\hat{\jmath} \times \hat{\jmath}=\hat{\boldsymbol{k}} \times \hat{\boldsymbol{k}}=\mathbf{0} \\
& \hat{\imath} \times \hat{\jmath}=-\hat{\jmath} \times \hat{\imath}=\hat{k} \\
& \hat{\jmath} \times \hat{k}=-\hat{k} \times \hat{\jmath}=\hat{\imath} \\
& \hat{k} \times \hat{\imath}=-\hat{\imath} \times \hat{k}=\hat{\jmath}
\end{aligned}
$$

$$
\begin{gathered}
\overrightarrow{\boldsymbol{A}} \times \overrightarrow{\boldsymbol{B}}=\left(A_{x} \hat{\imath}+A_{y} \hat{\boldsymbol{\jmath}}+A_{z} \hat{\boldsymbol{k}}\right) \times\left(B_{x} \hat{\imath}+B_{y} \hat{\boldsymbol{\jmath}}+B_{z} \hat{\boldsymbol{k}}\right) \\
\overrightarrow{\boldsymbol{A}} \times \overrightarrow{\boldsymbol{B}}=\left(A_{y} B_{z}-A_{z} B_{y}\right) \hat{\imath}+\left(A_{z} B_{x}-A_{x} B_{z}\right) \hat{\boldsymbol{\jmath}}+\left(A_{x} B_{y}-A_{y} B_{x}\right) \hat{\boldsymbol{k}}
\end{gathered}
$$

Example 1.11 (page 48): Vector \boldsymbol{A} has magnitude 6 units and is in the direction of the $+x$ axis. Vector \boldsymbol{B} has magnitude 4 units and lies in the $x y$-plane, making an angle of 30° with the $+x$ axis (Fig. 1.33). Find the vector product $\vec{C}=\vec{A} \times \vec{B}$.

$$
A B \sin \phi=(6)(4)\left(\sin 30^{\circ}\right)=12
$$

$$
\begin{aligned}
& A_{x}=6 \\
& B_{x}=4 \cos 30^{\circ}=2 \sqrt{3} \quad B_{y}=4 \sin 30^{\circ}=2 \\
& \overrightarrow{\boldsymbol{A}} \times \overrightarrow{\boldsymbol{B}}=\left(A_{y} B_{z}-A_{z} B_{y}\right) \hat{\imath}+\left(A_{z} B_{x}-A_{x} B_{z}\right) \hat{\jmath}+\left(A_{x} B_{y}-A_{y} B_{x}\right) \hat{k} \\
& C_{z}=(6)(2)-(0)(2 \sqrt{3})=12 \\
& \overrightarrow{\boldsymbol{C}}=12 \hat{\boldsymbol{k}}
\end{aligned}
$$

Summary

- A vector in cartesian coordinates and polar coordinates.
- Unit vectors, $\hat{i}, \hat{j}, \hat{k}$
- Vector quantities have direction as well as magnitude and combine according to the rules of vector addition.
- The scalar product of two vectors
- The vector product of two vectors

