Chapter 8: Conservation of Energy

PHY0101/PHY(PEN)101

Assoc. Prof. Dr. Fulya Bağcı

Outline

8.1 Nonisolated System (Energy)
8.2 Isolated System (Energy)
8.3 Situations Involving Kinetic Friction
8.4 Changes in Mechanical Energy for Nonconservative Forces
8.5 Power

8.4 Changes in Mechanical Energy for Nonconservative Forces

 $\Delta E_{\rm mech} = \Delta K + \Delta U_g = -f_k d = -\Delta E_{\rm int}$ In general, if a nonconservative force acts within an isolated system,

$$\Delta K + \Delta U + \Delta E_{\rm int} = 0$$

If the system in which nonconservative forces act is nonisolated and the external influence on the system is by means of work, the generalization:

$$\sum W_{\text{other forces}} - f_k d = \Delta E_{\text{mech}}$$
$$\sum W_{\text{other forces}} = W = \Delta K + \Delta U + \Delta E_{\text{int}}$$

Example 8.7 Crate Sliding Down a Ramp

A 3.00-kg crate slides down a ramp. The ramp is 1.00 m in length and inclined at an angle of 30° as shown. The crate starts from rest at the top, experiences a constant friction force of magnitude 5.00 N, and continues to move a short distance on the horizontal floor after it leaves the ramp.

$$\Delta K + \Delta U + \Delta E_{int} = 0$$

$$\left(\frac{1}{2}mv_f^2 - 0\right) + \left(0 - mgy_i\right) + f_k d = 0$$

$$v_f = \sqrt{\frac{2}{m}(mgy_i - f_k d)}$$

 $v_f = \sqrt{\frac{2}{3.00 \text{ kg}}} [3.00 \text{ kg} (9.80 \text{ m/s}^2)(0.500 \text{ m}) - (5.00 \text{ N})(1.00 \text{ m})]$ = 2.54 m/s **(B)** How far does the crate slide on the horizontal floor if it continues to experience a friction force of magnitude 5.00 N?

$$\Delta K + \Delta E_{\rm int} = 0$$

$$(0 - \frac{1}{2}mv_i^2) + f_k d = 0$$

$$d = \frac{mv_i^2}{2f_k} = \frac{(3.00 \text{ kg})(2.54 \text{ m/s})^2}{2(5.00 \text{ N})} = 1.94 \text{ m}$$

Example 8.8 Block-Spring Collision

A block having a mass of 0.80 kg is given an initial velocity $v_A = 1.2$ m/s to the right and collides with a spring whose mass is negligible and whose force constant is k = 50 N/m as shown. (a) Assuming the surface to be frictionless, calculate the maximum compression of the spring after the collision. (b) Suppose a constant force of kinetic friction acts between the block and the surface, with $\mu_k = 0.50$. If the speed of the block at the moment it collides with the spring is $v_A = 1.2$ m/s, what is the maximum compression x_C in the spring?

 $\Delta K + \Delta U = 0$ $(0 - \frac{1}{2}mv_{a}^{2}) + (\frac{1}{2}kx_{max}^{2} - 0) = 0$ $x_{\text{max}} = \sqrt{\frac{m}{k}} v_{\bigotimes} = \sqrt{\frac{0.80 \text{ kg}}{50 \text{ N/m}}} (1.2 \text{ m/s}) = 0.15 \text{ m}$ $f_{\mu} = \mu_{\mu}n = \mu_{\mu}mg$ $\Delta K + \Delta U + \Delta E_{int} = 0$ $(0 - \frac{1}{2}mv_{\odot}^{2}) + (\frac{1}{2}kx_{\odot}^{2} - 0) + \mu_{\mu}mgx_{\odot} = 0$ $kx_{\odot}^{2} + 2\mu_{k}mgx_{\odot} - mv_{\odot}^{2} = 0$ $50x_{\odot}^{2} + 2(0.50)(0.80)(9.80)x_{\odot} - (0.80)(1.2)^{2} = 0$ $50x_{\odot}^2 + 7.84x_{\odot} - 1.15 = 0$ $x_{\odot} = 0.092 \text{ m and } x_{\odot} = -0.25 \text{ m}$

The physically meaningful root is $x_{\odot} = 0.092$ m

Example 8.9 Connected Blocks in Motion

Two blocks are connected by a light string that passes over a frictionless pulley as shown in the figure. The block of mass m_1 lies on a horizontal surface and is connected to a spring of force constant k. The system is released from rest when the spring is unstretched. If the hanging block of mass m_2 falls a distance hbefore coming to rest, calculate the coefficient of kinetic friction between the block of mass m_1 and the surface.

(1)
$$\Delta U_g + \Delta U_s + \Delta E_{int} = 0$$

(0 - m_2gh) + $(\frac{1}{2}kh^2 - 0) + f_kh = 0$

$$-m_2gh + \frac{1}{2}kh^2 + \mu_k m_1gh = 0$$
$$\mu_k = \frac{m_2g - \frac{1}{2}kh}{m_1g}$$

8.5 Power

The time rate at which work is done by a force is said to be the power due to the force. If a force does an amount of work W in an amount of time Δt , the average power due to the force during that time interval is:

$$\overline{\mathcal{P}} = \frac{W}{\Delta t}$$

Thus, while the same work is done in rolling the refrigerator up both ramps, less power is required for the longer ramp.

In a manner similar to the way we approached the definition of velocity and acceleration, we define the instantaneous power *P* as the limiting value of the average power as Δt approaches zero:

$$\mathcal{P} \equiv \lim_{\Delta t \to 0} \frac{W}{\Delta t} = \frac{dW}{dt}$$

The instantaneous power can also be written as,

$$\mathcal{P} = \frac{dW}{dt} = \mathbf{F} \cdot \frac{d\mathbf{r}}{dt} = \mathbf{F} \cdot \mathbf{v}$$

In general, power is defined for any type of energy transfer. Therefore, the most general expression for power is

$$P=\frac{dE}{dt}$$

The SI unit of power is the joule per second. This unit is used so often that it has a special name, the watt (W), after James Watt.

$$1 \text{ W} = 1 \text{ J/s} = 1 \text{ kg} \cdot \text{m}^2/\text{s}^3$$

Assoc.Prof.Dr. Fulya Bağcı

Example 8.11 Power Delivered by an Elevator Motor

A 1000-kg elevator carries a maximum load of 800 kg. A constant frictional force of 4000 N retards its motion upward. What minimum power must the motor deliver to lift the fully loaded elevator at a constant speed of 3 m/s?

$$F_{net} = ma_y$$

$$T-f-Mg=0$$

$$T = f + Mg = 4000 + 1800 \times 9.8$$

=21640 N

$$P = T\vartheta = 21640 \text{ N} \times 3 \text{ m/s}$$

=6.48 kW

(B) What power must the motor deliver at the instant the speed of the elevator is v if the motor is designed to provide the elevator car with an upward acceleration of 1.00 m/s^2 ?

$$\sum F_{y} = T - f - Mg = Ma$$

$$T = M(a + g) + f$$

$$P = Tv = [M(a + g) + f]v$$

$$P = [(1\ 800\ \text{kg})(1.00\ \text{m/s}^{2} + 9.80\ \text{m/s}^{2}) + 4\ 000\ \text{N}]v$$

$$= (2\ 34 \times 10^{4})v$$

(4.01 \ 10

- A nonisolated system
- An isolated system
- Conservation of energy equations
- The instantaneous power

Assoc.Prof.Dr. Fulya Bağcı