Ankara University Engineering Faculty Department of Engineering Physics

PEN207

Circuit Design and Analysis

Prof. Dr. Hüseyin Sarı

Ankara University Engineering Faculty, Dept. of Engineering Physics

Fall

PEN207 Circuit Design and Analysis

Instructor: **Prof. Dr. Hüseyin Sarı**

A.U. Engineering Faculty, Dept. of Eng. Physics

Office: Department of Eng. Phy., B-Block, Room:105 *E-mail:* <u>hsari100@gmail.com</u> • hsari@eng.ankara.edu.tr web: www.huseyinsari.net.tr *Phone:* (312) 203 3424 (office) • 536 295 3555 (cell)

Course Plan

4 ECTS Credit: Class:

Lecture: 3 hours Problem Hours: 0 Lab: 0 **Class Hours:** Monday 09:30-12:15 (3 hours)

Classroom: Seminar Hall (Seminer Salonu)

Office Hours: Friday 11:00-12:00

Attendance: Mandatory

Exams:

Midterm (one midterm exam) % 30 **Final Exam** % 80

Passing Grade: 60 (C3) or higher

Course Materials and Textbook(s)

Lecture notes (Ppoint):

huseyinsari.net.tr → Desler → Circuit Design & Analysis (http://huseyinsari.net.tr/ders-pen207.htm)

Main book:

Temel Elektrik Mühendisliği, Cilt 1, Fitzgerald. A. E. Higginbotham D. E.,Grabel A. (Editor: Prof. Dr. Kerim Kıymaç, 3.Edition)

Textbooks

Recommended Textbooks-1:

Introductory Circuit Analysis Robert L. Boylestad Pearson Int. Edition (In library)

Electric Circuits

James W. Nilsson, Susan Riedel 6th Ed. (In library)

ELECTRIC CIRCUITS

Schaum's Outline of **Basic Circuit Analysis,** 2nd Edition John O'Malley (In library)

Textbooks

Recommended Textbooks-2:

Introduction to Electric Circuits Richard C. Dorf James A. Svoboda (In library)

Electrical Engineering: Principles & Applications Allan R. Hambley (In library)

Schaum's Outline of **3000 Solved Problems In Electric Circuits Syed A. Nasar** (In library)

Textbooks-Turkish

Recommended (Turkish)Textbooks-3:

Elektrik Devreleri James W. Nilsson, Susan Riedel Palme Yayınevi

Elektrik Devreleri (Ders Kitabı) -Problem Çözümleri Turgut İkiz, Papatya Bilim Yayınları

Elektrik Devreleri-l Teori ve Çözümlü Örnekler Ali Bekir Yıldız Volga Yayıncılık

> ELEKTRİK DEVRELERİ - I Teori ve çözümlü örnekler

> > Doç. Dr. Ali Bekir YILDIZ

Textbooks-Turkish

Recommended (Turkish)Textbooks-4:

Doğru Akım Devreleri ve Problem Çözümleri Mustafa Yağımlı-Feyzi Akar Beta Yayınları,6. Baskı, 2010.

Goal of the Course

In this class,

- Some definitions in circuit theory will be learned,
- Response of circuit elements (resistor, capacitance, inductor (coil) and power sources) will be learned,
- Theories and methods to analyse circuits will be learned...

Electricity vs Mechanics

h, m

We see electric circuits everywhere in our daily life from simple (city power network) to more complicated ones (radio receiver, radar, robot, cell phone, computers)

What is the current in the circuit below?

V = IR

$$I = \frac{V}{R} = \frac{30V}{3\Omega} = 10A$$

There are also very complicated circuits...

What is the voltage (V=?) between point A and B and the current (I=?) across 10Ω resistance in the circuit below?

It is not easy to solve this circuit!

To make a circuit handle more sophisticated tasks we have to add more and also different kind of circuit elements such as inductor, capacitance, and other kind of power supplies... 10Ω

Can we develop a systematic way to analyse any circuits whether it is simple or very complex? 15

There are already many different softwares to analyse circuit.

SPICE simulation CircuitLab: Online circuit simulator & schematic editor

- EasyEDA electrionic circuit design, circuit simulation and PCB design
- Circuit Sims
- DcAcLab
- DoCircuits
- PartSim
- 123D Circuits
- TinaCloud
- Computer softwares for circuit simulation
- Qucsis
- LT Spice Simulator
- Ngspice
- MultiSim National Instruments
- Proteus
- CircuitLogix
- XSPICE

We measure almost all **physical quantities** such as force, light, temperature, pressure, mass, velocity, acceleration, even gravitational waves by converting them to current or voltage.

Physical Quantities \longrightarrow Measurement \longrightarrow Data

We use electric circuits to transmit and process data...

Content of the Course

• In this course we will focus on only the circuits consisting of resistance, inductor and capacitors fed by **Direct** (DC) or **Alternative** (AC) sources...

• We will **NOT** deal with the circuits which have diod or transistors!

Content of the Course

• All circuits can be analyzed using only **Ohm's Law** and **Kirchhoff's Law**.

In this course;

- First we will apply these laws directly to circuits.
- Then we will develop more systematic methods such as **Mesh** and **Nodal Analysis**.

Calculus Skill for This Class

Some algebra?

One unknown equation:

$$a\mathbf{x} + b = 0$$
 $\mathbf{x} = ?$

Two unknown equation:

$$a_{1}x_{1} + a_{2}x_{2} = b_{1} \qquad x_{1} = ?$$

$$a_{3}x_{1} + a_{4}x_{2} = b_{2} \qquad x_{2} = ?$$

$$a_{4}x_{4} + a_{5}x_{5} = 0 \qquad |a - a|$$

$$\begin{array}{c} a_{1}x_{1} + a_{2}x_{2} = 0 \\ a_{3}x_{1} + a_{4}x_{2} = 0 \end{array} \qquad \Box \qquad det \begin{vmatrix} a_{1} & a_{2} \\ a_{3} & a_{4} \end{vmatrix} = 0$$

Calculus Skill for This Class

Three unknown equation:

$$a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = b_1 \qquad \mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3 = ?$$

$$a_{21}x_1 + a_{22}x_2 + a_{23}x_3 = b_2$$

$$a_{31}x_1 + a_{32}x_2 + a_{33}x_3 = b_3$$

$$\Box \rangle \quad x_{1} = \frac{\begin{vmatrix} b_{1} & a_{12} & a_{13} \\ b_{2} & a_{22} & a_{23} \\ b_{3} & a_{32} & a_{33} \end{vmatrix}}{\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}} \quad x_{2} = \frac{\begin{vmatrix} a_{11} & b_{1} & a_{13} \\ a_{21} & b_{2} & a_{23} \\ a_{31} & b_{3} & a_{33} \end{vmatrix}}{\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}} \quad x_{3} = \frac{\begin{vmatrix} a_{11} & a_{12} & b_{1} \\ a_{21} & a_{22} & b_{2} \\ a_{31} & a_{32} & b_{3} \end{vmatrix}}{\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}}$$

Homework-0

Homework-0.1:	3x - y = 1 $x + y = 3$	x, y=?
Homework-0.2:	x + 2y = 5 $2x + 4y = 10$	x, y=?
Homework-0.3:	-2x + y = 0 $4x - 2y = 0$	x, y=?
Homework-0.4:	3x - y + z = 4 $x + y - z = 0$ $x + 2y - 3z = -4$	x, y, z=?

Solutions-Homework-9

Solution- 3x - y = 1 x, y=? **Homework-0.1:** x + y = 3

$$\det \begin{vmatrix} 3 & -1 \\ 1 & 1 \end{vmatrix} = 3.1 - (-1).1 = 4 \qquad x = \frac{\begin{vmatrix} 1 & -1 \\ 3 & 1 \end{vmatrix}}{\det \begin{vmatrix} 3 & -1 \\ 1 & 1 \end{vmatrix}} = \frac{1.1 - (-1).3}{4} = \frac{4}{4} = 1 \qquad y = \frac{\begin{vmatrix} 3 & 1 \\ 1 & 3 \end{vmatrix}}{\det \begin{vmatrix} 3 & -1 \\ 1 & 1 \end{vmatrix}} = \frac{3.3 - 1.1}{4} = \frac{8}{4} = 2$$

Solution-Homework-0.2:

$$x + 2y = 5$$
 x, y=?
 $2x + 4y = 10$

$$\det \begin{vmatrix} 1 & 2 \\ 2 & 4 \end{vmatrix} = 1.4 - 2.2 = 0 \qquad x = \frac{\begin{vmatrix} 5 & 2 \\ 10 & 4 \end{vmatrix}}{\det \begin{vmatrix} 1 & 2 \\ 2 & 4 \end{vmatrix}} = \frac{5.4 - 2.10}{0} = \frac{0}{0} = ? \qquad y = \frac{\begin{vmatrix} 1 & 5 \\ 2 & 10 \end{vmatrix}}{\det \begin{vmatrix} 1 & 2 \\ 2 & 4 \end{vmatrix}} = \frac{1.10 - 2.5}{0} = \frac{0}{0} = ?$$

Solution-Homework-0.3:

$$-2x + y = 0 \qquad x,$$
$$4x - 2y = 0$$

$$\det \begin{vmatrix} -2 & 1 \\ 4 & -2 \end{vmatrix} = (-2) \cdot (-2) - 1 \cdot 4 = 0 \qquad x = \frac{\begin{vmatrix} 0 & 1 \\ 0 & -2 \end{vmatrix}}{\det \begin{vmatrix} -2 & 1 \\ 4 & -2 \end{vmatrix}} = \frac{0 \cdot (-2) - 1 \cdot 0}{0} = \frac{0}{0} = ? \qquad y = \frac{\begin{vmatrix} -2 & 0 \\ 4 & 0 \end{vmatrix}}{\det \begin{vmatrix} -2 & 1 \\ 4 & -2 \end{vmatrix}} = \frac{-2 \cdot 0 - 4 \cdot 0}{0} = \frac{0}{0} = ?$$

y=?

Solutions-Homework-0

25

Derivative

In physics most of the time we would like to know the change in physical quantities rather than the quantities itself. **Derivative** is a tool to give us this change.

$$y(t) = Ae^{bt} \implies \frac{dy(t)}{dt} = Abe^{bt} = by(t)$$

Derivative of some trigonometric functions:

$$y(t) = \sin t \implies \frac{dy(t)}{dt} = \cos t$$
$$y(t) = \cos t \implies \frac{dy(t)}{dt} = -\sin t$$

In physics derivative of a function with respect to time (t) can be sometime indicated as follows:

$$\frac{dx(t)}{dt} \equiv \dot{x}(t) = v$$
$$\frac{d^2 x(t)}{dt^2} \equiv \ddot{x}(t) = a$$

26

Differantial Equations

Differential equations are the equations that includes derivatives (dx/dt) as an unknown rather than simple unknown (x) itself.

$$a\frac{dx(t)}{dt} + bx(t) = 0$$

1st order (dx/dt), linear and homogeneous (=0)

$$a\frac{d^2x(t)}{dt^2} + b\frac{dx(t)}{dt} + cx(t) = 0$$

 2^{nd} order (d^2x/dt^2), linear and homogeneous (=0)

$$a\frac{d^{2}x(t)}{dt^{2}} + b\frac{dx(t)}{dt} + cx(t) = f\sin\left(\omega t\right)$$

 2^{nd} order (d^2x/dt^2) , linear and nonhomogeneous ($\neq 0$)

 2^{nd} order (d^2x/dt^2), (d^2x/dt^2)² nonlinear and nonhomogeneous ($\neq 0$)

$$a\left(\frac{d^2x(t)}{dt^2}\right)^2 + b\frac{dx(t)}{dt} + cx(t) = f\sin\left(\omega t\right)$$

We can convert differantial equatin to an algebraic equation

$$as^2 + bs + c = 0$$

$$s = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \alpha \pm i\omega \qquad \begin{aligned} \alpha &= \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \quad b^2 > 4ac \\ \omega &= \pm \frac{\sqrt{b^2 - 4ac}}{2a} \quad b^2 < 4ac \end{aligned}$$

i) If b=0 the root s become pure imaginary $s=i\omega$:

$$a\frac{d^2x(t)}{dt^2} + b\frac{dx(t)}{dt} + cx(t) = 0 \qquad x(t) = e^{i\omega t}$$

ii) If $b\neq 0$ the roots are become complex number $s=\alpha+i\omega$:

$$a\frac{d^{2}x(t)}{dt^{2}}+b\frac{dx(t)}{dt}+cx(t)=0 \qquad x(t)=e^{(\alpha+i\omega)t}=e^{\alpha t}e^{i\omega t} \qquad 28$$

Expression of a periodic function in terms of exponential function

ii) If $b\neq 0$ the roots are become complex number $s=\alpha+i\omega$:

$$\frac{d^2 x(t)}{dt^2} + b \frac{dx(t)}{dt} + cx(t) = 0$$
$$x(t) = Ae^{(\alpha + i\omega)t} = Ae^{\alpha t}e^{i\omega t}$$

 $x(t) = Ae^{\alpha t}e^{i\omega t} = (Ae^{-at})\cos(\omega t)$

Exponential Functions

Depending on the independent variable (real or imaginary number) behaviour of exponential function can be very different.

Some topics that we will cover in this course

- Response of Circuit Elements (Resistor, Inductor, Capacitance)
- Power Sources (Voltage and Current Sources)
- Ohm's Law
- Kirchhoff's Voltage Law (KVL)
- Kirchhoff's Current Law (KCL)
- Series and Parallel Circuits; Δ -Y, Y- Δ Conversion
- Mesh Analysis
- Nodal Analysis
- Alternating Current (AC) and Circuits
- Avarage, Root Mean Square (RMS)

Weekly Course Plan

- Chapter-0: Introduction & Motivation (This week)
- Chapter-1: Circuit Elements (2 weeks)
- Chapter-2: Circuits with Resistance (3 weeks)
- Chapter-3: Transition Response of Circuits (2 weeks)
- Chapter-4: Exponential Inpute and Transformed Circuits (2 weeks)
- Chapter-5: Steady-State AC Circuits (2 weeks)

