Ankara University
 Engineering Faculty
 Department of Engineering Physics

PEN207

Circuit Design and Analysis

Prof. Dr. Hüseyin Sarı

Chapter-2

Methods of Circuit Analysis and Circuit Theorems
 $$
(3 / 3)
$$

Circuit Reduction Before we start...

Circuit Reduction-Series Circuits

One of the methods used to reduce circuit complexity is circuit reduction. The circuit to be reduced may contain sources or circuit elements.
1 - In a series circuits common quantity is current.

$\begin{array}{llll}\mathrm{A} & \mathrm{R}_{1} & \mathrm{R}_{2} & \mathrm{R}_{\mathrm{n}} \\ \mathrm{B}\end{array}$

$$
\because W M-W W----W M-\quad V=I R_{1}+I R_{2}+I R_{3}+\ldots . .+I R_{n}
$$

$$
\longleftarrow+\mathrm{V}-\longrightarrow V=I\left(R_{1}+R_{2}+R_{3}+\ldots . .+R_{n}\right)=I R_{e q}
$$

$$
R_{\text {equivalent }} \equiv R_{1}+R_{2}+R_{3}+\ldots \ldots+R_{n}
$$

$$
\mathrm{A} \quad \begin{array}{cc}
\mathrm{R}_{\mathrm{eq}} & \mathrm{~B} \\
\hdashline \mathrm{WW} &
\end{array}
$$

Example-2.10: Find the current I in the following circuit.

Solution:

Equivalent voltage source: $\quad E_{e q}=100 \mathrm{~V}-40 \mathrm{~V}=60 \mathrm{~V}$
Equivalent Resistor: $\quad R_{e q}=15 \Omega+40 \Omega+5 \Omega=60 \Omega$ (in series)

Circuit Reduction-Parallel Circuits

Another connection is a parallel connection. Parallel connections of circuit elements and sources are shown below.
2 - Common quantity in parallel circuit is voltage.

Example-2.11: Find the voltage between the ends of the parallel circuit below.

Solution:

Equivalent current:

$$
I_{e q}=15 A-5 A=10 A
$$

Equivalent resistor $G_{e q}=\frac{1}{10}+\frac{1}{4}+\frac{1}{6.67}=0.5 \mathrm{mho} \Rightarrow R_{e q}=2 \Omega$

Voltage: $\quad V=I_{e q} R_{e q}=(10 A)(2 \Omega)=20 V$

Example-2.12: In the following circuit find the equivalent resistor (R).

Solution: When applying the circuit reduction method, starting from the point of the the resistors are connected farthest away from the source and going to the source.

Between a-b (2Ω and 8Ω resistors are in series).

$$
R_{a b}=2 \Omega+8 \Omega=10 \Omega
$$

Between c-d (10Ω and 10Ω resistors are in parallel) : $\quad R_{c d}=\frac{(10 \Omega)(10 \Omega)}{10 \Omega+10 \Omega}=5 \Omega$

Between e-f (5Ω and 1Ω resistors are in series): $\quad R_{e f}=5 \Omega+1 \Omega=6 \Omega$

Between $\mathrm{x}-\mathrm{y}(2 \Omega$ and 1Ω resistors are in series).

$$
R_{x y}=2 \Omega+1 \Omega=3 \Omega
$$

Example-2.13: Find the resistor (R_{ab}).

Solution: KCL at point A we can find current I_{3}

$$
I_{3}=I+2 I=3 I
$$

KVL for the mesh at left:

$$
E=3 I+4(3 I)=15 I
$$

Resistor: $\quad R=\frac{E}{I}=15 \Omega$

3- There are certain circuit configuration that cannot be solved only by serial and parallel connections. These transformations can often be resolved by using Y- Δ conversion. For example, the circuit below is neither fully serial nor fully parallel.

This conversion allows the three Y-connected resistors to be connected to the Δ shaped and vice versa.

Δ-Configuration (П-Configuration)

Y-Configuration
(T-Configuration)

Y- Δ (T-П) Conversions

This conversion allows Y-connected three resistors to be converted to the Δ connected three resistors.

Example-2.14: Find the equivalent resistor between the b-d terminals

Solutions: If the Δ-resistors connected to the point a-b-c in the circuit is converted to Y-resistors by the Δ-> Y conversion, the new resistors ($\mathrm{R}_{1}, \mathrm{R}_{2}$ and R_{3})

$$
\begin{aligned}
R_{1} & =\frac{R_{b} R_{c}}{R_{a}+R_{b}+R_{c}} \\
R_{2} & =\frac{R_{a} R_{c}}{R_{a}+R_{b}+R_{c}}
\end{aligned}
$$

$$
R_{3}=\frac{R_{a} R_{b}}{R_{a}+R_{b}+R_{c}}
$$

$$
\begin{aligned}
& R_{1}=\frac{(8 \Omega)(4 \Omega)}{4 \Omega+4 \Omega+8 \Omega}=2 \Omega \\
& R_{2}=\frac{(4 \Omega)(4 \Omega)}{4 \Omega+4 \Omega+8 \Omega}=1 \Omega \\
& R_{3}=\frac{(4 \Omega)(8 \Omega)}{4 \Omega+4 \Omega+8 \Omega}=2 \Omega
\end{aligned}
$$

After the conversion, the new circuit can be simplified with serial and parallel connections.

$$
\begin{aligned}
& R_{e a d}=1 \Omega+5 \Omega=6 \Omega \\
& R_{e c d}=2 \Omega+10 \Omega=12 \Omega \\
& R_{e d}=\frac{(6 \Omega)(12 \Omega)}{6 \Omega+12 \Omega}=4 \Omega
\end{aligned}
$$

$$
R_{b d}=2 \Omega+4 \Omega=6 \Omega
$$

Homevork : (a) Find the equivalent resistor between the b-d terminals by convertint the Δ-shape the acd resistors to Y-converion.
(b) Convert the Y-resistor connected to the points bcd to Δ-shape.

Example-2.15: Using the circuit reduction method, find the voltage V in the following circuit.

Solution: Converting resistors Δ-connected to a, b and c to Y-shape. Then converting current sourse 48 A and 3Ω to voltage source

Superposition Principle

If there are more than one sources in a circuit, the voltage and current can be considered as a sum of contribution of each sources.

This principle arises from the fact that the current through any resistor is directly proportional to the voltage.

$$
f\left(x_{1}\right)+f\left(x_{1}\right)=f\left(x_{1}+x_{2}\right)
$$

If there are several sources in the circuit, the each source is disabled while taking into account the effect of other source.

$$
I_{E}+I_{A}=I
$$

Superposition Principle

$$
I_{E}+I_{A}=I
$$

Voltage Source \rightarrow Short Circuit

$$
\stackrel{i}{1}^{+}=\tilde{0}_{-}^{+}
$$

Current Source \rightarrow Open Circuit

Example-2.16: Find the currents $\mathrm{I}_{1}, \mathrm{I}_{2}$ and I_{3} using the superposition principle in the following circuit (This problem was solved by direct implementation of the basic laws in Example-2.1).

Solution: At first, the currents will be found by assuming that the 140 V source has no effect (assuming zero); secondly, the currents as if the current source of 18A has no effect (assuming open circuit). Then we fill find the algebraic sum of the currents

1- Suppose the 140 V voltage source has no effect (assuming zero-short circuit). Find the desired currents using the node voltage method.

$$
\begin{aligned}
& V_{2}^{\prime} \cdot\left(\frac{1}{20}+\frac{1}{6}+\frac{1}{5}\right)=18 A \quad \square \begin{array}{l}
I_{1}^{\prime}=-43.2 \mathrm{~V} / 20 \Omega=-2.16 \mathrm{~A} \\
I_{2}^{\prime}=43.2 \mathrm{~V} / 6 \Omega=7.20 \mathrm{~A} \\
I_{3}^{\prime}=43.2 \mathrm{~V} / 5 \Omega=8.64 \mathrm{~A}
\end{array}
\end{aligned}
$$

2- Let us find the currents as if the current source has no effect (open circuit). To find the currents, mesh currents method can be applied I and II.

The net currents will be the sum of the currents found above.

$$
\begin{aligned}
& I_{1}=I_{1}^{\prime}+I_{1}^{\prime \prime}=-2.16+6.16=4.00 \mathrm{~A} \\
& I_{2}=I_{2}^{\prime}+I_{2}^{\prime \prime}=7.20+2.80=10.00 \mathrm{~A} \\
& I_{3}=I_{3}^{\prime}+I_{3}^{\prime \prime}=8.64+3.36=12.00 \mathrm{~A}
\end{aligned}
$$

It is the same as the currents previously found in Example-2.1 obtained by the application of the basic laws.

Thevenin's Theorem

Thevenin's Theorem is basically permits a simple representation of the circuit when viewed from any pair of output terminals of a complex circuit. As a result of this a load connected to the output of the circuit it allows to determine the effect of the circuit on the load or effect of the load on the circuit itself.

Thevenin's Theorem: Any linear two-terminal circuit consisting of resistors and sources can be represented by a voltage source and a series resistor.

Thevenin's Theorem

Let us find the current that will pass through the ab branch for different values of R resistor. For this we will have to re-analyze the entire circuit for each resistor. Instead, we simply avoid the analysis of the circuit to the left of point ab (if we can express it with a voltage source and a resistor) each time.

$$
I_{R}=\frac{E_{\text {Theverin }}}{R_{\text {Thevenin }}+R}
$$

Consider the resistance between points A and B in the circuit below:

Thevenin Theory

How to find Thevenin's Circuit
1- The circuit element between the selected two terminals is removed,

2- Voltage between these two terminals is found,

3- Equivalent resistance of the circuit is calculated (setting Current sources open circuit, voltage sources short circuit).

Example: Find the current through the branch ab for the $2 \Omega, 20 \Omega$ and 500Ω of the R resistor in the circuit below. Find the equivalent circuit of Thevenin

Solution: The remainder of the circuit when looked from the points ab can be represented by a voltage source and a resistor, ie an equivalent Thevenin circuit.

$$
I_{a b}=\frac{16 / 3 V}{2 \Omega+R}
$$

$$
\begin{array}{lll}
\mathrm{R} & \mathrm{R}=2 \Omega & I_{a b}=\frac{16 / 3 V}{2 \Omega+2 \Omega}=1.33 \mathrm{~A} \\
& \mathrm{R}=20 \Omega & I_{a b}=\frac{16 / 3 V}{2 \Omega+20 \Omega}=0.24 \mathrm{~A} \\
\mathrm{~b} & \mathrm{R}=500 \Omega & I_{a b}=\frac{16 / 3 V}{2 \Omega+500 \Omega}=0.01 \mathrm{~A}
\end{array}
$$

Example: Find the Thevenin equivalent circuit when viewed from
a) ab terminals
b) ac terminals.

Solution: a) Thevenin equivalent circuit viewed from ab terminals

Equivalent Resistance

$$
R_{e q}=?
$$

$$
R_{e q}=\frac{(1 \Omega+1 \Omega) \cdot(2 \Omega)}{(1 \Omega+1 \Omega)+2 \Omega}=1 \Omega
$$

Equivalent Voltage Source

$$
E_{T h}=?
$$

$$
\begin{aligned}
& I=\frac{8 V}{4 \Omega}=2 A \\
& E_{a b}=(2 \Omega)(2 A)=4 V \quad \square \quad E_{T h}=4 V
\end{aligned}
$$

Thevenin equivalent circuit when viewed from ab terminals :

b) Thevenin equivalent circuit viewed from ac terminals

$$
\begin{aligned}
& R_{e q}=? \\
& E_{T h}=? \\
& \quad R_{e s}=\frac{(5 \Omega) \cdot(2 \Omega)}{5 \Omega+2 \Omega}+1 \Omega=2.4 \Omega \\
& \quad I=\frac{8 \mathrm{~V}}{7 \Omega}=1.14 \mathrm{~A} \\
& E_{a c}=(5 \Omega)(1.14 \mathrm{~A})=5.7 \mathrm{~V} \square E_{T h}=5.7 \mathrm{~V}
\end{aligned}
$$

Thevenin equivalent circuit when viewed from ac terminals:

Example-2.17: Find the resistance R that can absorb the highest power from the circuit below and calculate the power.

Solution: To find power, current and resistance R must be known. Since power is the product of current and voltage ($\mathrm{P}=\mathrm{I} . \mathrm{V}$), multiplication of current and voltage (or resistance) is more important than their individual values. Therefore, there must be an $I(R)$ relation that gives I as a function of R.

Since it is desired to find the resistor R , the resistor R is taken out and the Thevenin equivalent circuit of the rest of the circuit is formed.

To find V_{o} voltage, the 140 V voltage source can be converted into a current source with a 20Ω resistor (Node Voltage Method).

$$
V_{o}=I \cdot R_{o} \Rightarrow I=\frac{V_{o}}{R_{o}}=\frac{140 \mathrm{~V}}{20 \Omega}=7 \mathrm{~A} \quad \text { Source conversion }
$$

If the Kirchhoff's Current Law (KCL) equation is used for the above circuit, the V_{o} voltage can be found:

$$
V_{o} \cdot\left(\frac{1}{20 \Omega}+\frac{1}{5 \Omega}\right)=7 A+18 A \square \quad V_{o}=100 V
$$

To find the equivalent resistance R_{o}, the sources are eliminated (voltage supply short circuit; current supply open circuit).
(The same result is obtained when both circuits are made for a voltage or current source). In case of voltage supply

$$
R_{o}=\frac{(20 \Omega) \cdot(5 \Omega)}{20 \Omega+5 \Omega}=4 \Omega
$$

The Thevenin equivalent circuit viewed from the terminals a-b can be represented by a voltage source of 100 V and a resistance of 4Ω.

Using the KVL current passing through resistor R:

$$
100 \mathrm{~V}-4 I-R I=0 \Rightarrow I=\frac{100 \mathrm{~V}}{4+R}
$$

Power (P) on the resistor R :

$$
P=I^{2} R=\frac{10000 R}{(4+R)^{2}}
$$

If the maximum resistance value is found from the expression giving the change of power according to the resistance:

$$
\begin{aligned}
\frac{d P}{d R} & =\frac{10000(4+R)^{2}-20000(4+R) R}{(4+R)^{4}}=0 \quad \square \quad R=4 \Omega \\
I & =\frac{100}{4+4}=12.5 A \quad \square P_{\max }=(12.5 A)^{2}(4 \Omega)=625 \mathrm{~W}
\end{aligned}
$$

Resistance Match (Impedance Matching)

This example is equivalent to Example-2.1. In example-2.1, instead of a 6Ω resistor, this example has a R resistor.

This example shows how to find the current and voltage of a circuit according to a single circuit element with the help of Thevenin's theorem. Also note that for maximum power transmission the load resistance (R) is equal to the equivalent resistance of the source when viewed from the terminals of \mathbf{R}.

Equivalent source resistor is called output resistor, and the method of equalizing the output resistor to the load resistor is known as resistance matching (most commgnly impedance matching).

Example-2.18: Find the Thevenin equivalent circuit as seen from the a-b terminals in the circuit below.

Solution: There is a dependent source in the circuit. Therefore, it should be examined separately from the circuit where only independent resources exist. For this reason first, the short-circuit voltage V_{0} and the opencircuit current I_{0}; then there will be equivalent resistance.

KCL at the junction $\mathbf{A}: \quad I_{2}=I_{1}+5 I_{1}=6 I_{1}$
KVL through outher loop: $\quad+80 \mathrm{~V}-10 I_{1}-5 I_{2}=0$

$$
\square 10 I_{1}+5 I_{2}=10 I_{1}+5\left(6 I_{1}\right)=80 \mathrm{~V} \quad \square I_{1}=2 A ; I_{2}=12 \mathrm{~A}
$$

$$
\square V_{o}=5 \Omega \cdot I_{2}=5 \Omega .(12 \mathrm{~A})=60 \mathrm{~V}
$$

Finding Thevenin resistor R_{0} :
The circuit is redrawn as shown below. As a result of the short circuit, the output voltage and consequently the current at the 5Ω resistor are zero. KVL and KCL equations :

$$
\begin{aligned}
10 I_{1} & =80 V \Rightarrow I_{1}=8 \mathrm{~A} \\
I_{o} & =I_{1}+5 I_{1}=48 \mathrm{~A}
\end{aligned}
$$

Since there is a dependent current source in the circuit, I_{0} ve E_{o} are found between ab to find the equivalent resistance: so their ratio $\left(\mathrm{E}_{0} / \mathrm{I}_{0}\right)$ is R_{0}. If there were not the dependent source, the normal way to find R_{o} would be to eliminate the effect of power supplies (current source is open circuit, voltage

R_{o} resistor:

$$
R_{o}=\frac{V_{o}}{I_{o}}=\frac{60 \mathrm{~V}}{48 \mathrm{~A}}=1.25 \Omega
$$

Thevenin equivalent

Norton equivalent

Example-2.19: The following circuit is the circuit of an unbalanced bridge used to measure resistance. Find the current through the ammeter A. The internal resistance of the ammeter is 9Ω.

Solution: The solution of this problem can be greatly simplified by using the Thevenin equivalent circuit of the circuit. The first step is to take out the ammeter and find the open circuit voltage V_{0}.

$$
\begin{gathered}
I_{1}=\frac{100 \mathrm{~V}}{20 \Omega+30 \Omega}=2 \mathrm{~A} \quad I_{2}=\frac{100 \mathrm{~V}}{10 \Omega+90 \Omega}=1 \mathrm{~A} \\
V_{o}=20 I_{1}-10 I_{2}=(20 \Omega)(2 \mathrm{~A})-(10 \Omega)(1 \mathrm{~A})=30 \mathrm{~V}
\end{gathered}
$$

Equivalent R_{o} resistor:

The equivalent circuit of the Thevenin will consist of a 30V voltage source and a 21Ω series connected resistor. If the ammeter is placed, current will flow through it (considering the internal resistance of the 9Ω ammeter)

$$
I=\frac{30 V}{21 \Omega+9 \Omega}=1 A
$$

