Ankara University
 Engineering Faculty
 Department of Engineering Physics

PEN207

Circuit Design and Analysis

Prof. Dr. Hüseyin Sarı

Chapter-4

Exponential Input and Transformed Circuits (2/2)

Transformed Circuits

In the previous sections, the solution of the circuit responses were simple circuits which could be described by a single differential equation. The purpose of this section is to extend these concepts to multi-junction (node) and multi-loop (mesh) circuits that require a common solution of multiple simultaneous equations.

Consider the circuit below. The current source in this circuit is $i(t)=I e^{s t}$. The voltage $v_{2}(t)$ on the capacitor C is the desired response. Since the circuit has three nodes, the solution requires two nodes $(3-1=2)$.

KCL for node A:

$$
G v_{1}(t)+\frac{1}{L} \int\left(v_{1}(t)-v_{2}(t)\right) d t=i(t)=I e^{s t}
$$

KCL for node B:

$$
-\frac{1}{L} \int\left(v_{1}(t)-v_{2}(t)\right) d t+C \frac{d v_{2}(t)}{d t}=0
$$

If derivative of both side are taken:

$$
\begin{gathered}
G \frac{d v_{1}(t)}{d t}+\frac{1}{L}\left(v_{1}(t)-v_{2}(t)\right)=\frac{d i(t)}{d t}=s I e^{s t} \\
-\frac{1}{L}\left(v_{1}(t)-v_{2}(t)\right)+C \frac{d^{2} v_{2}(t)}{d t^{2}}=0
\end{gathered}
$$

equations containing only derivatives are obtained. There are two dependent variables in the equations, $v_{1}(t)$ ve $v_{2}(t)$. Solutions are:

$$
\begin{aligned}
& v_{1 f}(t)=V_{1} e^{s t} \\
& v_{2 f}(t)=V_{2} e^{s t}
\end{aligned}
$$

Both components contain exponential terms; only the coefficients are different. Eliminating the exp term:

$$
\begin{aligned}
& s G V_{1} e^{s t}+\frac{1}{L}\left(V_{1}-V_{2}\right) e^{s t}=s I e^{s t} \\
& -\frac{1}{L}\left(V_{1}-V_{2}\right) e^{s t}+s^{2} C V_{2} e^{s t}=0
\end{aligned}
$$

Rearanging:

$$
\begin{aligned}
V_{1}\left(G+\frac{1}{s L}\right)-V_{2} \frac{1}{s L} & =I \\
-V_{1} \frac{1}{s L}+V_{2}\left(s C+\frac{1}{s L}\right) & =0
\end{aligned}
$$

Two equations, two unknowns (V_{1} and V_{2}) (Assuming that the current I is given).

Common solution for $\mathrm{V}_{2} / \mathrm{I}$:

$$
G \equiv \frac{1}{R}
$$

$$
\frac{V_{2}}{I}=\frac{1}{s^{2} L C G+s C+G} \quad \square V_{2}=\frac{I}{s^{2} L C G+s C+G}
$$

Solution:

$$
\begin{aligned}
v_{2 f}(t) & =V_{2} e^{s t} \\
v_{2 f}(t) & =\frac{I e^{s t}}{s^{2} L C G+s C+G} \quad \text { obtained. }
\end{aligned}
$$

The solution of the circuit can also be understood directly by a transformation of this circuit into the frequency domain. The transformed circuit is shown in the figure below.

Conductivity (G), inductance (L) and capacitance (C) were converted to admittance (Y). In Chapter 2, the Node-Voltage Method can be applied directly by replacing the conductivity (G) with the admittance (Y) in the transformed circuit.

KCL Equations:
For node A:

$$
\begin{aligned}
V_{1}\left(G+\frac{1}{s L}\right)-V_{2} \frac{1}{s L} & =I \\
-V_{1} \frac{1}{s L}+V_{2}\left(s C+\frac{1}{s L}\right) & =0
\end{aligned}
$$

The equations of the circuit were expressed with the differential equations in time domain (independent variable time). The transformed circuit and the algebraic equations corresponding to the circuit are converted into s or frequency domain. The effect of the transformation makes it possible to find solutions with algebraic equations instead of differential equations. Thus, all methods of resistance circuits obtained in Chapter 2 can be used for transformed circuits.

For node A:

$$
G v_{1}(t)+\frac{1}{L} \int\left(v_{1}(t)-v_{2}(t)\right) d t=i(t) \quad \square \quad V_{1}\left(G+\frac{1}{s L}\right)-V_{2} \frac{1}{s L}=I
$$

For node B:

$$
-\frac{1}{L} \int\left(v_{1}(t)-v_{2}(t)\right) d t+C \frac{d v_{2}(t)}{d t}=0 \quad \square \quad-V_{1} \frac{1}{s L}+V_{2}\left(s C+\frac{1}{s L}\right)=0
$$

Example-4.5: Convert the following circuit using the impedance parameters.

Solution-4.5:

The transformed circuit using the impedance values is shown in the figure below.

Mesh Current equations:

$$
\begin{array}{ll}
I_{I}\left(5+2 s+\frac{10}{s}\right)-I_{I I} \frac{10}{s}=V & \left.\begin{array}{l}
\text { Two equations, two } \\
\text { unknowns (} \mathrm{I}_{\mathrm{I}} \text { ve } \mathrm{I}_{I I}
\end{array}\right) \\
-I_{I} \frac{10}{s}+I_{I I}\left(3+4 s+\frac{10}{s}\right)=0 & \begin{array}{l}
\text { (assuming that voltage } \\
\text { V is given). }
\end{array}
\end{array}
$$

Common solution for $\mathrm{I}_{\mathrm{II}} / \mathrm{V}$:

$$
\frac{I_{I I}}{V}=\frac{1}{8 s^{3}+26 s^{2}+76 s+80} \quad \square \quad I_{I I}=\frac{V}{8 s^{3}+26 s^{2}+76 s+80}
$$

Current expression in time domani: $\quad i_{I I}(t)=I_{I I} e^{s t}$

$$
i_{I I}(t)=\left(\frac{V}{8 s^{3}+26 s^{2}+76 s+80}\right) e^{s t} \text { obtained }
$$

Input Impedance and Admittance

Many electrical circuits have a pair of input terminals to which the source is applied. Such circuits are called two-terminal circuits or single-input circuits.

For these circuits, the ratio of voltage to current (V/I) is called input impedance.
Such a circuit with input impedance or admittance Y(s) can be shown as a twoclosed box. The impedance or admittance functions fully describe the behavior of the circuit at its endpoints. These values can be determined by the circuit reduction method described in Section 2.5.

Let's look at the circuit above:

$$
\begin{gathered}
Z_{a a^{\prime}}(s)=R_{1}+s L \quad Y_{a a^{\prime}}(s)=\frac{1}{Z_{a d^{\prime}}(s)}=\frac{1}{R_{1}+s L} \\
Y_{b b^{\prime}}(s)=s C+Y_{a a^{\prime}}(s) \\
Y_{b b^{\prime}}(s)=s C+\frac{1}{R_{1}+s L}=\frac{s^{2} L C+s R_{1} C+1}{R_{1}+s L}
\end{gathered}
$$

Input impedance:

$$
Z_{b b^{\prime}}(s)=\frac{1}{Y_{b b^{\prime}}(s)}=\frac{R_{1}+s L}{s^{2} L C+s R_{1} C+1} \quad Z(s)=R_{2}+\frac{R_{1}+s L}{s^{2} L C+s R_{1} C+1}
$$

Input admittance is the inverse of the input impedance:

$$
Z(s)=\frac{s^{2} R_{2} L C+s\left(R_{1} R_{2} C+L\right)+R_{1}+R_{2}}{s^{2} L C+s R_{1} C+1} \quad Y(s)=\frac{1}{Z(s)}=\frac{s^{2} L C+s R_{1} C+1}{s^{2} R_{2} L C+s\left(R_{1} R_{2} C+L\right)+R_{1}+R_{2}}
$$

Example-4.6: Find the input impedance Z (s) of the circuit below.

Solution-4.6:

Let us find the admittance of the parallel RC circuit to the right of ab line.

$$
Y_{a b}(s)=\frac{1}{10}+\frac{s}{10}=\frac{s+1}{10}
$$

Add the impedance of the serial connected $R L$ to $\mathrm{Z}_{\mathrm{ab}}(\mathrm{s})$

$$
\begin{gathered}
Z_{a b}(s)=\frac{1}{Y_{a b}(s)}=\frac{10}{s+1} \quad Z_{c d}(s)=5+5 s+\frac{10}{s+1}=\frac{5 s^{2}+10 s+15}{s+1} \\
Y(s)=\frac{1}{10}+\frac{1}{Z_{c d}(s)} \\
Y(s)=\frac{1}{10}+\frac{1}{Z_{c d}(s)}
\end{gathered}
$$

Example-4.7: Find the voltage V_{A} in the circuit below.

Solution-4.7:

Since the desired quantity V_{A} is the voltage, its negative end will be selected as the reference point, the points A and B and the voltage V_{B} will be defined as follows.

KCL equations:
For node A: $\quad V_{A}\left(\frac{1}{10}+\frac{s}{5}+\frac{1}{2 s}\right)-V_{B} \frac{1}{10}=I_{1}$
For node B:

$$
-V_{A} \frac{1}{10}+V_{B}\left(\frac{1}{10}+\frac{1}{4 s}\right)=-\left(I_{1}+I_{2}\right)
$$

Such equations can be easily solved by using the Cramer rule

$$
\begin{gathered}
\left(\frac{2 s^{2}+s+5}{10 s}\right) V_{A}-\frac{1}{10} V_{B}=I_{1} \\
\left.V_{A}=\frac{-\frac{1}{10} V_{A}+\left(\frac{2 s+5}{20 s}\right) V_{B}=-\left(I_{1}+I_{2}\right)}{\left|\begin{array}{cc}
\frac{2 s^{2}+s+5}{10} & -\frac{1}{10} \\
I_{1} & -\left(I_{1}+I_{2}\right) \\
\frac{2 s+5}{20 s}
\end{array}\right|} \begin{array}{|cc}
-\frac{2 s+5}{10}
\end{array} \right\rvert\, \quad V_{A}=\frac{50 s I_{1}-50 s^{2} I_{2}}{4 s^{3}+10 s^{2}+15 s+25}
\end{gathered}
$$

Note that the first of the two terms in V_{A} 's includes I_{1} as a multiplier and the second as I_{2}. This is the result of the total circuit response resulting from the effect of two sources, the sum of the individual responses, the superposition principle that determines that these responses are independent of each other.

$$
V_{A}=\frac{50 s I_{1}}{4 s^{3}+10 s^{2}+15 s+25}+\frac{-50 s^{2} I_{2}}{4 s^{3}+10 s^{2}+15 s+25}
$$

Example-4.8: Find the Thevenin equivalent circuit seen from ab terminals in the circuit below.

Solution-4.8:

The equivalent Thevenin circuit can be found by source xonverting and circuit reduction methods. First, the parallel I source and the $3 \mathrm{~s} \Omega$ impedance are converted into a series connected voltage source 3 sI and $3 \mathrm{~s} \Omega$ impedance. The result of this transformation is shown in the circuit below. Series connected impedance and series voltage sources are combined as follows

Thevenin eşdeğer geriliminin $\left(\mathbf{E}_{0}\right)$ bulunması:

Thevenin equivalent voltage E_{0} can be found in two steps:
Current in the circuit:

$$
I=\frac{3 s I-E}{3 s+10+5 / s}=\frac{s(3 s I-E)}{3 s^{2}+10 s+5}
$$

$V=I Z$
$\begin{aligned} & \text { Voltage between ab terminals } \\ & \text { (voltage on condancator) : }\end{aligned} \quad E_{o}=I\left(\frac{5}{s}\right)=\frac{15 s I-5 E}{3 s^{2}+10 s+5}$

Thevenin equivalent impedance:

If the power supply is deactivated (short-circuited) in the circuit below, the impedance Z and the $5 / \mathrm{s} \Omega$ resistor are connected in parallel when viewed from ab ends.

Thevenin equivalent circuit:

$$
E_{o}=\frac{15 s I-5 E}{3 s^{2}+10 s+5}+\underbrace{\mathrm{Z}_{\mathrm{o}}=(15 \mathrm{~s}+50) /\left(3 \mathrm{~s}^{2}+10 \mathrm{~s}+5\right) \Omega} \quad+\mathrm{a}
$$

Example-4.9: The following circuit is a simple amplifier model with feedback. What is the ratio of the output voltage to the input voltage $\left(\mathrm{E}_{\mathrm{o}} / \mathrm{E}_{\mathrm{i}}\right)$

Solution-4.9:

The circuit equations are four, including the equations defining E_{o} ve V_{x}, as well as two KVL equations. A different form of mesh current method will be used when writing KVL equations. Note that although the direction of I_{I} is chosen as usuall manner, the direction pf the current I_{II} is selected such that it emerges exactly around the outer loop. The result of this selection is the sum of the currents I_{I} and I_{II} at the 10Ω resistor connected in series with E_{i}, and therefore the algebraic signs of the coefficients in the KVL equation should reflect this fact.

KVL equations: around loop I_{I} :

$$
\left(10+\frac{10}{s}\right) I_{I}-10 I_{I I}=E_{i}
$$

$$
\text { Around outher mesh }\left(\mathrm{I}_{\mathrm{II}}\right): \quad-10 I_{I}+\left(10+10+\frac{10}{s}\right) I_{I I}=E_{i}+100 V_{x}
$$

Equations that defines voltages

$$
\begin{aligned}
V_{x} & =\frac{10}{s} I_{I} \\
E_{o} & =-100 V_{x}
\end{aligned}
$$

An important consequence of the unexpected selection of current variables is that the V_{x} voltage is the function of I_{I} alone, where it would previously be proportional to the two current differences as a result of the selection.

$$
-10 I_{I}+\left(20+\frac{10}{s}\right) I_{I I}=E_{i}+100 \frac{10}{s} I_{I} \quad \square \quad-\left(10+\frac{1000}{s}\right) I_{I}+\left(20+\frac{10}{s}\right) I_{I I}=E_{i}
$$

$$
\begin{array}{cl}
\left(10+\frac{10}{s}\right) I_{I}-10 I_{I I}=E_{i} & \text { First equation } \\
-\left(10+\frac{1000}{s}\right) I_{I}+\left(20+\frac{10}{s}\right) I_{I I}=E_{i} & \text { Second equation }
\end{array}
$$

Common solution: $\quad I_{I}=\frac{s E_{i}(s+1)}{10 s^{2}+1030 s+10}$
From voltage equivalent: $V_{x}=\frac{10}{s} I_{I}=\frac{(s+1)}{s^{2}+103 s+1} E_{i} \longleftrightarrow E_{o}=-100 V_{x}=-\frac{100(s+1)}{s^{2}+103 s+1} E_{i}$

Ratio of the voltages: $\quad \frac{E_{o}}{E_{i}}=-\frac{100(s+1)}{s^{2}+103 s+1} \quad$ found.

