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Transformed Circuits 

In the previous sections, the solution of the circuit responses were simple circuits 

which could be described by a single differential equation. The purpose of this 

section is to extend these concepts to multi-junction (node) and multi-loop (mesh) 

circuits that require a common solution of multiple simultaneous equations. 

Consider the circuit below. The current source in this circuit is i(t)=Iest. The 

voltage v2(t) on the capacitor C is the desired response. Since the circuit has three 

nodes, the solution requires two nodes (3-1 = 2). 
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If derivative of both side are taken: 

Both components contain exponential terms; only the coefficients are different. 

Eliminating the exp term: 
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equations containing only derivatives are obtained. There are two dependent 

variables in the equations, v1(t) ve v2(t). Solutions are: 
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Rearanging: 

Solution: 

Common solution for V2/I : 
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The solution of the circuit can also be understood directly by a transformation of this 

circuit into the frequency domain. The transformed circuit is shown in the figure 

below.  
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KCL Equations: 
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v2(t) Ybb=sC  
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Conductivity (G), inductance (L) and capacitance (C) were converted to admittance (Y). In 

Chapter 2, the Node-Voltage Method can be applied directly by replacing the conductivity (G) 

with the admittance (Y) in the transformed circuit. 

For node A: 

For node B: 

Transformation 
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For node A: 

For node B: 

The equations of the circuit were expressed with the differential equations in time domain 

(independent variable time). The transformed circuit and the algebraic equations corresponding to 

the circuit are converted into s or frequency domain. The effect of the transformation makes it 

possible to find solutions with algebraic equations instead of differential equations. Thus, all 

methods of resistance circuits obtained in Chapter 2 can be used for transformed circuits. 

 1 1 2( ) ( )
1

( ) ( )  G dtv t v t v i
L

tt

  2
1 2

( )
( ) )

1
( 0   

v t
v t v t

d
dt C

L dt

1 2

1 1
( )  G V

sL sL
V I

1 2

1 1
( ) 0   sC

sL sL
V V



9 

Example-4.5: Convert the following circuit using the impedance parameters. 
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Solution-4.5:  
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Mesh Current equations: 

The transformed circuit using the impedance values is shown in the figure below. 
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Current expression in time domani: 
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Input Impedance and Admittance 

Many electrical circuits have a pair of input terminals to which the source is 

applied. Such circuits are called two-terminal circuits or single-input circuits. 

For these circuits, the ratio of voltage to current (V / I) is called input impedance. 

Such a circuit with input impedance or admittance Y(s) can be shown as a two-

closed box. The impedance or admittance functions fully describe the behavior of 

the circuit at its endpoints. These values can be determined by the circuit 

reduction method described in Section 2.5. 
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Y(s) 
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Let’s look at the circuit above: 
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Input admittance is the inverse of the input impedance: 
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Example-4.6:  Find the input impedance Z (s) of the circuit below. 

0.1C  
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Z(s) 
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d 



14 

Solution-4.6:  

10/s W 

5 W 

10 W 
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b 

5s 
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Let us find the admittance of the parallel RC circuit to the right of ab line.  
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Add the impedance of the serial connected RL to Zab(s) 
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Example-4.7: Find the voltage VA in the circuit below. 

1/10 mho 

VA 

+ - 

I2  
I1  

1/4s mho 

1/2s mho 

s/5 mho 

VB 

+ 

A  

B  
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Solution-4.7:  

For node A: 

Since the desired quantity VA is the voltage, its negative end will be selected as 

the reference point, the points A and B and the voltage VB will be defined as 

follows. 
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( )
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KCL equations: 
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Such equations can be easily solved by using the Cramer rule 
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Note that the first of the two terms in VA's includes I1 as a multiplier and the 

second as I2. This is the result of the total circuit response resulting from the effect 

of two sources, the sum of the individual responses, the superposition principle 

that determines that these responses are independent of each other. 
2
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Example-4.8: Find the Thevenin equivalent circuit seen from ab terminals in the 

circuit below. 

5/sW 

a 

i(t)  3sW 

+ - E  

10W 

b 
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Solution-4.8:  

Thevenin equivalent voltage Eo can be found in two steps: 

The equivalent Thevenin circuit can be found by source xonverting and circuit 

reduction methods. First, the parallel I source and the 3sW impedance are 

converted into a series connected voltage source 3sI and 3s W impedance. The 

result of this transformation is shown in the circuit below. Series connected 

impedance and series voltage sources are combined as follows 
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(voltage on condancator) : 
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  
o
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E
I
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E
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Current in the circuit: 

V IZ

Thevenin eşdeğer geriliminin (Eo) bulunması:      
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If the power supply is deactivated (short-circuited) in the circuit below, the 

impedance Z and the 5 / s W resistor are connected in parallel when viewed from ab 

ends. 

Thevenin equivalent circuit: 

2

(3 10)(5 / ) 15 50

(3 10) 5/ 3 10 5
o

s s s
Z

s s s s

 
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   

5/s W 
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- 

Eo  

b 

+ 
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(3sI-E)  

Z=(3s+10) W 

a 

+ 

- 
b 

+ 

- 

Zo=(15s+50)/(3s2+10s+5) W 

2

15 5

3 10 5
o

EIs

s s
E




 

5/s W 

a 

b 

Z=(3s+10) W 

Thevenin equivalent impedance:      
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Example-4.9: The following circuit is a simple amplifier model with feedback. 

What is the ratio of the output voltage to the input voltage (Eo/Ei) 

10/sW 

a 

10W 

b 

+ 

- 

Ei  

10/sW 10W 

+ 

- 

Vx  
+ 

- 

Eo  

- 

+ 
100Vx 
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Solution-4.9:  

The circuit equations are four, including the equations defining Eo ve Vx, as well as 

two KVL equations. A different form of mesh current method will be used when 

writing KVL equations. Note that although the direction of II is chosen as usuall 

manner, the direction pf the current III is selected such that it emerges exactly around 

the outer loop. The result of this selection is the sum of the currents II and III at the 

10W resistor connected in series with Ei, and therefore the algebraic signs of the 

coefficients in the KVL equation should reflect this fact.   

10
(10 ) 10I II iI I E

s
  

KVL equations:  

around loop  II : 

10/s W 

a 

III  

10 W 

b 

+ 

- 

Ei  

10/sW 10W 

+ 

- 

Vx  
+ 

- 

Eo  

- 

+ 

100Vx 

II 

10
10 (10 1 000 ) 1I i xII

s
I I E V     Around outher mesh (III): 
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10
x IV

s
I

Equations that defines voltages 

100o xE V 

An important consequence of the unexpected selection of current variables is that the Vx 

voltage is the function of II alone, where it would previously be proportional to the two 

current differences as a result of the selection. 
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


 
Common solution: 
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s


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  2
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o x i

s
E V

s s
E


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From voltage equivalent: 

Ratio of the voltages: 
2

100( 1)

103 1

o

i

E s

s sE


 

 
found. 
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(10 ) (20 )I iII EI
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(10 ) 10I II iI I E

s
   First equation 

Second equation 


