CHAPTER 1. CLASSIFICATION of DIFFERENTIAL EQUATIONS

Definition. An equation involving derivatives of one or more independent variables is called a differential equation.

Example.

$$
\begin{align*}
& \frac{d^{2} y}{d x^{2}}+x y\left(\frac{d y}{d x}\right)^{3}=0 \tag{1}\\
& \frac{d^{4} x}{d t^{4}}+5 \frac{d^{2} x}{d t^{2}}+3 x=e^{x} \tag{2}
\end{align*}
$$

Definition. The order of the highest ordered derivative involved in a differential equation is called the order of the differential equation.
Equation (1) is a second order ordinary differential equation. Equation (2) is a fourth order ordinary differential equation.

Definition. A linear ordinary differential equation of order n, in the independent variable y and the dependent variable x, is an equation that can be expressed in the form

$$
\begin{equation*}
a_{0}(x) \frac{d^{n} y}{d x^{n}}+a_{1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\ldots+a_{n-1}(x) \frac{d y}{d x}+a_{n}(x) y=b(x) \tag{3}
\end{equation*}
$$

where a_{0} is not identically zero.
Definition. An equation which is not linear is called a nonlinear differential equation.

Example. The following differential equations are linear:

$$
\begin{gather*}
\frac{d^{2} y}{d x^{2}}+3 \frac{d y}{d x}-2 y=0 \tag{4}\\
\frac{d^{4} y}{d x^{4}}+x^{2} \frac{d^{2} y}{d x^{2}}-e^{x} \frac{d y}{d x}+4 y=\cos x \tag{5}
\end{gather*}
$$

The following differential equations are nonlinear:

$$
\begin{gathered}
\frac{d^{2} y}{d x^{2}}+3\left(\frac{d y}{d x}\right)^{2}-2 y=0 \\
\frac{d^{4} y}{d x^{4}}+x^{2} \frac{d^{2} y}{d x^{2}}-e^{x} \frac{d y}{d x}+4 y=\cos y
\end{gathered}
$$

Definition. In equation (3), if one of the coefficients $a_{0}(x), a_{1}(x), \ldots, a_{n}(x)$ depend on x, then equation (3) is said that linear with variable coeffivients; if all of the coefficients are constant, then equation (3) is said that linear with constant coefficients.

Definition. If in equation (3) $b(x) \equiv 0$, then equation (3) is said that homogeneous otherwise it is called nonhomogeneous.

Example. Equation (4) is a second order constant coefficients homogeneous linear differential equation. Equation (5) is a fourth order variable coefficients nonhomogeneous linear differential equation.

Consider n-th order ordinary differential equation of the form

$$
\begin{equation*}
F\left(x, y, \frac{d y}{d x}, \ldots, \frac{d^{n} y}{d x^{n}}\right)=0 \tag{6}
\end{equation*}
$$

where F is a real function of its $(n+2)$ derivatives $x, y, \frac{d y}{d x}, \ldots, \frac{d^{n} y}{d x^{n}}$.
Definition. Let $y=f(x)$ be a real function defined for all x in a real interval I and having an n-th derivative for all $x \in I$. The function f is called an explicit solution of the differential equation (6) on I if it satisfies the equation (6). That is, the substitution of $f(x)$ and derivatives for y and corresponding derivatives in equation (6), reduces (6) to an identity on I.

A relation $g(x, y)=0$ is called an implicit solution of equation (6) if this relation defines one or more explicit solution of equation (6) on I.
Example. The function $f(x)=e^{3 x}$ is an explicit solution of

$$
\frac{d y}{d x}=3 y
$$

on the interval $(-\infty, \infty)$.
Example. The relation $x^{3}+y^{3}-8=0$ is an implicit solution of the differential equation

$$
y^{2} \frac{d y}{d x}=-x^{2} .
$$

Definition. A solution of equation (6) containing n arbitrary constants is called a general solution of equation (6).
Definition. A solution of (6) obtained from a general solution of equation (6) by giving particular values to one or more of the n arbitrary constants is called a particular solution.

Example. Consider the first order differential equation

$$
\begin{equation*}
\frac{d y}{d x}=3 x^{2} \tag{7}
\end{equation*}
$$

The function $g(x)=x^{3}$ is a solution of equation (7). Moreover the functions $g_{1}(x)=x^{3}+1, g_{2}(x)=x^{3}+2, \ldots, g_{n}(x)=x^{3}+c$ are solutions. The function $g_{n}(x)=x^{3}+c$ defines the general solution of equation (7), where c is an arbitrary constant. The functions g, g_{1}, g_{2}, \ldots are particular solutions.

Definition. A solution of equation (6) that can not be obtained from a general solution by any choice of the n arbitrary constants is called a singular solution.

Example. Consider the equation

$$
\begin{equation*}
\left(\frac{d y}{d x}\right)^{2}-4 y=0 \tag{8}
\end{equation*}
$$

The function $f(x)=(x+c)^{2}$ is a general solution of equation (8). $f_{1}(x)=$ $(x+1)^{2}, f_{2}(x)=(x+2)^{2}, \ldots$ are particular solutions. $g(x)=0$ is a singular solution. Because $y \equiv 0$ satisfies equation (8). But, it can not be obtained from the general solution.

