CHAPTER 2. FIRST ORDER DIFFERENTIAL EQUATIONS

2.1. Seperable Equations

If a first order differential equation can be reduced to form

$$
F(x) d x+G(y) d y=0
$$

then it is called seperable equation.
If an equation is seperable, then the general solution can be obtained by integrating both sides of equation

$$
\int G(y) d y=-\int F(x) d x
$$

So, one parameter solution is

$$
g(y)=f(x)+c .
$$

Example. Solve the following differential equations.
1)

$$
(x-4) y^{4} d x-x^{3}\left(y^{2}-3\right) d y=0
$$

Solution. By dividing $x^{3} y^{4}(x \neq 0, y \neq 0)$, we obtain

$$
\left(\frac{1}{y^{2}}-3 \frac{1}{y^{4}}\right) d y=\left(\frac{1}{x^{2}}-4 \frac{1}{x^{3}}\right) d x
$$

Integrating above equation we obtain one parameter family of solutions

$$
-\frac{1}{y}+\frac{1}{y^{3}}=-\frac{1}{x}+\frac{2}{x^{2}}+c
$$

In the seperation process, we divide given equation by $x^{3} y^{4}$. Note that $y=0$ is a solution of given differential equation. But, it doesn't member of one-parameter family of solutions. So, $y=0$ is a solution which was lost in the seperation process.
2)

$$
y^{\prime}=\frac{1}{2} x\left(1-y^{2}\right)
$$

3)

$$
(1+x) d y-y d x=0
$$

2.2. Homogeneous Equations

Consider the following differential equation

$$
\begin{equation*}
M(x, y) d x+N(x, y) d y=0 \tag{1}
\end{equation*}
$$

Definition. If the functions M and N in equation (1) are both homogeneous with same degree, then the differential equation (1) is called homogeneous.

Theorem. If equation (1) is a homogeneous differential equation, then the change of variables $y=v x$ transforms given equation into a seperable equation, where $v=v(x)$.
Example. Solve the following differential equations.
1)

$$
x d y=\left(y+x e^{-y / x}\right) d x
$$

Solution. Since the functions $M(x, y)=y+x e^{-y / x}$ and $N(x, y)=-x$ are both homogeneous with degree 1, given differential equation is homogeneous. Applying the change of variables

$$
\begin{aligned}
y & =v x, v=v(x) \\
\frac{d y}{d x} & =x \frac{d v}{d x}+v
\end{aligned}
$$

to given equation, we obtain a seperable differential equation

$$
e^{v} d v=\frac{d x}{x}
$$

Integrating last equation we get

$$
e^{v}=\ln |x|+c
$$

which is the solution of seperable equation. Writing $v=\frac{y}{x}$, the solution of homogeneous differential equation is obtained as

$$
y=x \ln (\ln |x|+c .)
$$

2)

$$
x^{2} y^{\prime}=y^{2}+x y-x^{2}
$$

3)

$$
2 x^{3} y d x+\left(x^{4}+y^{4}\right) d y=0
$$

2.3. Equations Reducible to Homogeneous Equations

Consider the differential equation of the form

$$
\begin{equation*}
\left(a_{1} x+b_{1} y+c_{1}\right) d x+\left(a_{2} x+b_{2} y+c_{2}\right) d y=0 \tag{1}
\end{equation*}
$$

where $a_{i}, b_{i}, c_{i}, d_{i}$ are constants.
Theorem. Case 1. If $\frac{a_{1}}{a_{2}} \neq \frac{b_{1}}{b_{2}}$ that is, $a_{1} b_{2}-a_{2} b_{1} \neq 0$, then the equations

$$
\begin{aligned}
& a_{1} x+b_{1} y+c_{1}=0 \\
& a_{2} x+b_{2} y+c_{2}=0
\end{aligned}
$$

has a solution (h, k) and the transformation

$$
\begin{aligned}
& x=X+h \\
& y=Y+k
\end{aligned}
$$

reduces equation (1) to the homogeneous equation

$$
\left(a_{1} X+b_{1} Y\right) d X+\left(a_{2} X+b_{2} Y\right) d Y=0
$$

in the variables X and Y.
Case 2. If $\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}$ that is, $a_{1} b_{2}-a_{2} b_{1}=0$, then the transformation $z=a_{1} x+b_{1} y$ reduces the equation (1) to a seperable equation in the variables x and z.

Example. Solve the following differential equations.
1)

$$
(x-2 y+1) d x+(4 x-3 y-6) d y=0
$$

Solution. Here $a_{1} b_{2}-a_{2} b_{1} \neq 0$ and the solution of the system

$$
\begin{array}{r}
x-2 y+1=0 \\
4 x-3 y-6=0
\end{array}
$$

is $x=3, y=2$. So, the transformation

$$
\begin{aligned}
& x=X+3 \\
& y=Y+2
\end{aligned}
$$

reduces the given equation into the homogeneous equation

$$
(X-2 Y) d X+(4 X-3 Y) d Y=0
$$

Applying the transformation $Y=v X, v=v(X)$, we obtain the following seperable equation

$$
X \frac{d v}{d X}=\frac{3 v^{2}-2 v-1}{4-3 v}
$$

$$
\frac{3 v-4}{3 v^{2}-2 v-1} d v=-\frac{d X}{X}
$$

Integrating last equation we obtain the solution of seperable equation as

$$
X^{4}(3 v+1)^{5}=c(v-1)
$$

Since $Y=v X$, the solution of homogeneous equation is

$$
|3 Y+X|^{5}=c|Y-X|
$$

Replacing X by $x-3$ and Y by $z-2$, we obtain the solution of given differential equation

$$
|3 y+x-9|^{5}=c|y-x+1|
$$

2)

$$
(x-y+3) d x+(2 x+4 y-1) d y=0
$$

3)

$$
\frac{d y}{d x}=\frac{x-y+1}{x+y+3}
$$

