CHAPTER 2. FIRST ORDER DIFFERENTIAL EQUATIONS

2.4. Exact Differential Equations

Definition. Let F be a function of two real variables such that F has continuous first partial derivatives in a domain D. The total differential $d F$ of the function F is defined by the formula

$$
d F(x, y)=\frac{\partial F(x, y)}{\partial x} d x+\frac{\partial F(x, y)}{\partial y} d y
$$

for all $(x, y) \in D$.
Definition The differential form

$$
\begin{equation*}
M(x, y) d x+N(x, y) d y \tag{1}
\end{equation*}
$$

is called an exact differential in a domain D if there exists a function F of two real variables such that this expression equals the total differential $d F(x, y)$ for all $(x, y) \in D$.

That is, expression (1) is an exact differential in D if there exists a function F such that

$$
\frac{\partial F(x, y)}{\partial x}=M(x, y) \text { and } \frac{\partial F(x, y)}{\partial y}=N(x, y) \text { for all }(x, y) \in D
$$

If $M(x, y) d x+N(x, y) d y$ is an exact differential, then the differential equation

$$
M(x, y) d x+N(x, y) d y=0
$$

is called an exact differential equation.
Theorem. Consider the differential equation

$$
\begin{equation*}
M(x, y) d x+N(x, y) d y=0 \tag{2}
\end{equation*}
$$

where M and N have continuous first partial derivatives at all points (x, y) in a rectangular domain D. The differential equation (2) is exact if and only if

$$
\frac{\partial M(x, y)}{\partial y}=\frac{\partial N(x, y)}{\partial x}
$$

for all $(x, y) \in D$.
Example. Solve the following differential equations.
1)

$$
\left(3 x^{2}+4 x y\right) d x+\left(2 x^{2}+2 y\right) d y=0
$$

Solution. We observe that the equation is exact since

$$
\frac{\partial M(x, y)}{\partial y}=\frac{\partial N(x, y)}{\partial x}=4 x
$$

So, there exists a function $F(x, y)$ such that

$$
\begin{align*}
& \frac{\partial F}{\partial x}=3 x^{2}+4 x y \tag{3}\\
& \frac{\partial F}{\partial y}=2 x^{2}+2 y \tag{4}
\end{align*}
$$

Thus, from (3), we get

$$
\begin{equation*}
F(x, y)=x^{3}+2 x^{2} y+h(y) \tag{5}
\end{equation*}
$$

Using (4)and (5), we get

$$
\begin{equation*}
\frac{\partial F}{\partial y}=2 x^{2}+2 y=2 x^{2}+h^{\prime}(y) \tag{6}
\end{equation*}
$$

From (6) we obtain $h^{\prime}(y)=2 y$ and $h(y)=y^{2}+c_{1}$. So, we obtain $F(x, y)=$ $x^{3}+2 x^{2} y+y^{2}+c_{1}$ and the solution of given differential equation

$$
x^{3}+2 x^{2} y+y^{2}=c
$$

2)

$$
\left(2 x \cos y+3 x^{2} y\right) d x+\left(x^{3}-x^{2} \sin y-y\right)=0, y(0)=2
$$

3)

$$
\left(y e^{x y} \tan x+e^{x y} \sec ^{2} x\right) d x+x e^{x y} \tan x d y=0
$$

2.5. Integrating Factor

Consider the following differential equation

$$
\begin{equation*}
M(x, y) d x+N(x, y) d y=0 \tag{1}
\end{equation*}
$$

Definition. If the differential equation (1) is not exact but the differential equation

$$
\lambda(x, y) M(x, y) d x+\lambda(x, y) N(x, y) d y=0
$$

is exact, then $\lambda(x, y)$ is called an integrating factor of the differential equation (1).

Theorem. (i)If

$$
\frac{M_{y}-N_{x}}{N}
$$

depends on x only, then

$$
\lambda(x)=\exp \int\left(\frac{M_{y}-N_{x}}{N}\right) d x
$$

is an integrating factor.
(ii)

$$
\frac{M_{y}-N_{x}}{-M}
$$

depends on y only, then

$$
\lambda(y)=\exp \int\left(\frac{M_{y}-N_{x}}{-M}\right) d y
$$

is an integrating factor.
Example. Solve the following differential equations.
1)

$$
\left(x^{2}+y^{2}+x\right) d x+x y d y=0
$$

Solution. Let us first observe that this equation is not exact. It is clear that $M_{y}=2 y, N_{x}=y$ and

$$
\frac{M_{y}-N_{x}}{N}=\frac{1}{x}
$$

So there exists and integrating factor which depends on x. Integrating factor is calcuşated as

$$
\lambda(x)=\exp \int\left(\frac{M_{y}-N_{x}}{N}\right) d x=x
$$

Multiplying equation by λ we obtain the equation

$$
\left(x^{3}+x y^{2}+x^{2}\right) d x+x^{2} y d y=0
$$

which is exact. Now, we have to find the function $F(x, y)$ such that

$$
\begin{align*}
\frac{\partial F}{\partial x} & =x^{3}+x y^{2}+x^{2} \tag{i}\\
\frac{\partial F}{\partial y} & =x^{2} y \tag{ii}
\end{align*}
$$

Integrating (i, we get

$$
\begin{equation*}
F(x, y)=\frac{x^{4}}{4}+\frac{x^{2} y^{2}}{2}+\frac{x^{3}}{3}+h(y) \tag{iii}
\end{equation*}
$$

Taking the derivative of (iii) with respect to y and using (ii), we obtain the solution of differential equation

$$
3 x^{4}+6 x^{2} y^{2}+4 x^{3}=c
$$

2)

$$
\left(2 x y^{2}-3 y^{3}\right) d x+\left(7-3 x y^{2}\right) d y=0
$$

3)

$$
\left(2 x y^{3}-2 x^{3} y^{3}-4 x y^{2}+2 x\right) d x+\left(3 x^{2} y^{2}+4 y\right) d y=0
$$

