CHAPTER 2. FIRST ORDER DIFFERENTIAL EQUATIONS

2.6. First Order Linear Differential Equations

Definition. A differential equation that can be written in the form

$$
\begin{equation*}
\frac{d y}{d x}+p(x) y=q(x) \tag{1}
\end{equation*}
$$

is called a first order linear differential equation.
Let us write equation (1) in the differential form

$$
\begin{equation*}
(p(x) y-q(x)) d x+d y=0 \tag{2}
\end{equation*}
$$

It is clear that equation (2) is not exact, but it can be found integrating factor as

$$
\lambda(x)=e^{\int p(x) d x}
$$

Multiplying (1) by $\lambda(x)$, we get

$$
\frac{d}{d x}\left[e^{\int p(x) d x} y\right]=e^{\int p(x) d x} q(x)
$$

Integrating this equation we get

$$
y=e^{-\int p(x) d x}\left[\int e^{\int p(x) d x} q(x) d x+c\right]
$$

or

$$
\begin{equation*}
y(x)=\frac{1}{\lambda(x)}\left[\int \lambda(x) q(x) d x+c\right] . \tag{3}
\end{equation*}
$$

Example. Solve the following differential equations.
1)

$$
\frac{d y}{d x}+\left(\frac{2 x+1}{x}\right) y=e^{-2 x}
$$

Solution. We observe that the equation is linear with $p(x)=\frac{2 x+1}{x}$ and $q(x)=e^{-2 x}$. The integrating factor is obtained as

$$
\lambda(x)=e^{\int \frac{2 x+1}{x} d x}=e^{2 x+\ln x}=x e^{2 x} .
$$

So, from the formula (3), we have

$$
y(x)=\frac{e^{-2 x}}{x} \int x d x=\frac{e^{-2 x}}{x}\left(\frac{x^{2}}{2}+c\right)=e^{-2 x}\left(\frac{x}{2}+\frac{c}{x}\right) .
$$

2)

$$
\left(x^{2}+1\right) d y=x(1-4 y) d x, y(2)=1
$$

3)

$$
y^{2} d x+(3 x y-1) d y=0
$$

2.7. Bernoulli Equation

Definition. An equation of the form

$$
\begin{equation*}
\frac{d y}{d x}+P(x) y=Q(x) y^{n}, n \in \mathbb{R} \tag{1}
\end{equation*}
$$

is called Bernoulli differential equation. Note that if $n=0$, then equation (1) is linear; if $n=1$, then equation (1) is seperable.

Theorem. Suppose $n \neq 0,1$. Then the transformation $z=y^{1-n}$ reduces the Bernoulli equation to a linear equation

$$
\frac{d y}{d x}+(1-n) P(x) z=(1-n) Q(x)
$$

Example. Solve the following differential equations.
1)

$$
\frac{d y}{d x}+y=x y^{3}
$$

Solution. It is clear that the given equation is Bernoulli with $n=3$. Applying the transformation $z=y^{-2}$, we get

$$
\frac{d z}{d x}=-2 y^{-3} \frac{d y}{d x}
$$

or

$$
\frac{d y}{d x}=-\frac{1}{2} y^{3} \frac{d z}{d x}
$$

Substituting $z=y^{-2}$ and $\frac{d y}{d x}=-\frac{1}{2} y^{3} \frac{d z}{d x}$ into given differential equation we obtain a first order linear differential equation

$$
\frac{d z}{d x}-2 z=-2 x
$$

Integrating factor for the last equation is obtaines as

$$
\lambda(x)=e^{\int-2 d x}=e^{-2 x}
$$

Multiplying the linear equation by $\lambda(x)=e^{-2 x}$, we get

$$
\frac{d}{d x}\left[e^{-2 x} z\right]=-2 x e^{-2 x}
$$

Integrating last equation we obtain

$$
e^{-2 x} z=x e^{-2 x}+\frac{1}{2} e^{-2 x}+c
$$

or

$$
z=x+\frac{1}{2}+c e^{2 x}
$$

Since $z=y^{-2}$, we obtain the solution of Bernoulli equation as

$$
\frac{1}{y^{2}}=x+\frac{1}{2}+c e^{2 x}
$$

2)

$$
x y^{\prime}=2(y-\sqrt{x y})
$$

3)

$$
2 y d x+x\left(x^{2} \ln y-1\right) d y=0
$$

