## CHAPTER 2. FIRST ORDER DIFFERENTIAL EQUATIONS

### 2.8. Riccati Equations

Definition. A differential equation of the form

$$
\begin{equation*}
\frac{d y}{d x}+p(x) y^{2}+q(x) y+r(x)=0 \tag{1}
\end{equation*}
$$

is called Riccati differential equation.
If $p(x) \equiv 0$, then equation (1) is linear;
If $r(x) \equiv 0$, then equation (1) is Bernoulli;
If $p, q$ and $r$ are constants, then equation (1) is separable

$$
\frac{d y}{p y^{2}+q y+r}=d x
$$

Theorem. If $y_{1}=y_{1}(x)$ is a particular solution of equation (1), then substitution

$$
y=y_{1}(x)+\frac{1}{u(x)}
$$

converts the Riccati equation into a first order linear equation in $u$.
Proof. From the transformation $y=y_{1}(x)+\frac{1}{u(x)}$, we get

$$
\frac{d y}{d x}=\frac{d y_{1}}{d x}-\frac{1}{u^{2}} \frac{d u}{d x}
$$

Substituting in equation (1), we have

$$
\begin{equation*}
\frac{d y_{1}}{d x}-\frac{1}{u^{2}} \frac{d u}{d x}+p(x)\left[y_{1}^{2}+\frac{2 y_{1}}{u}+\frac{1}{u^{2}}\right]+q(x)\left[y_{1}+\frac{1}{u}\right]+r(x)=0 \tag{2}
\end{equation*}
$$

Since $y_{1}$ is a particular solution of (1) it is satisfied that

$$
\frac{d y_{1}}{d x}+p(x) y_{1}^{2}+q(x) y_{1}+r(x)=0 .
$$

Writing last equality into (2), we have

$$
-\frac{1}{u^{2}} \frac{d u}{d x}+\frac{2 y_{1} p(x)}{u}+\frac{p(x)}{u^{2}}+\frac{q(x)}{u}=0
$$

Multiplying by $-u^{2}$ we obtain linear equation

$$
\frac{d u}{d x}-\left(2 y_{1}(x) p(x)+q(x)\right) u=p(x)
$$

Remark. If two particular solutions $y_{1}, y_{2}$ are known, then the general solution of Riccati equation can be found in terms of an integral:

$$
\frac{y-y_{1}}{y-y_{2}}=c \exp \left(p(x)\left(y_{2}(x)-y_{1}(x)\right) d x\right)
$$

Example. Solve the following differential equations.
1)

$$
\frac{d y}{d x}=(1-x) y^{2}+(2 x-1) y-x
$$

Solution. We observe that the equation is Riccati and a particular solution is $y_{1}=1$. So, from the transformation

$$
y=1+\frac{1}{u}, \frac{d y}{d x}=-\frac{1}{u^{2}} \frac{d u}{d x}
$$

we obtain

$$
-\frac{1}{u^{2}} \frac{d u}{d x}=(1-x)\left(1+\frac{2}{u}+\frac{1}{u^{2}}\right)+(2 x-1)\left(1+\frac{1}{u}\right)-x
$$

or

$$
\frac{d u}{d x}+u=x-1
$$

which is a first order linear differential equation. Integrating factor for linear equation is obtained as

$$
\lambda(x)=e^{x} .
$$

So, the general solution of linear equation is

$$
u(x)=x-2+c e^{-x}
$$

Since $y=1+\frac{1}{u}$, general solution of given Riccati equation is obtained as

$$
y=\frac{x-1+c e^{-x}}{x-2+c e^{-x}}
$$

2) 

$$
x y^{\prime}-y^{2}+(2 x+1) y=x^{2}+2 x .
$$

3) 

$$
e^{-x} \frac{d y}{d x}+y^{2}-2 y e^{x}=1-e^{2 x}
$$

### 2.9. Substitutions

We note that a differential equation which looks different from any of those that we have studied, may be solved easily by a change of variables. However, we can not give any rule.

Example. Solve the following differential equations.
1)

$$
x \frac{d y}{d x}-y=\frac{x^{3}}{y} e^{y / x}
$$

Solution. Let $v=\frac{y}{x}$. So, we have

$$
\frac{d v}{d x}=\frac{x y^{\prime}-y}{x^{2}}=\frac{y^{\prime}}{x}-\frac{y}{x^{2}}
$$

or

$$
\frac{d y}{d x}=x \frac{d v}{d x}+\frac{d y}{d x}
$$

Hence, given equation becomes

$$
x^{2} \frac{d v}{d x}=\frac{x^{3}}{y} e^{y / x}
$$

or

$$
\frac{d v}{d x}=\frac{e^{v}}{v}
$$

which is a separable equation. Integration by parts yields

$$
-v e^{-v}+e^{-v}=x+c
$$

Since $v=\frac{y}{x}$, we obtain the solution of given equation as

$$
e^{-y / x}\left(1+\frac{y}{x}\right)=x+c
$$

2) 

$$
y^{\prime}=y-x-1+(x-y+2)^{-1}
$$

3) 

$$
\frac{d y}{d x}+\tan x \tan y \ln (\sin y)=0
$$

