CHAPTER 2. FIRST ORDER DIFFERENTIAL EQUATIONS

2.8. Riccati Equations

Definition. A differential equation of the form

Yt p@)? + o)y +r(a) =0 (1)

is called Riccati differential equation.

If p(x) = 0, then equation (1) is linear;
If r(z) = 0, then equation (1) is Bernoulli;

If p,q and r are constants, then equation (1) is separable
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Theorem. If y; = y;(z) is a particular solution of equation (1), then substitu-
tion
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converts the Riccati equation into a first order linear equation in w.

Proof. From the transformation y = y; (z) + , we get
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Substituting in equation (1), we have
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Since y; is a particular solution of (1) it is satisfied that
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Writing last equality into (2), we have
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2 we obtain linear equation
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Multiplying by —u



Remark. If two particular solutions ¥1, y2 are known, then the general solution
of Riccati equation can be found in terms of an integral:
Y-
Y—Y2

= cexp (p(z) (y2(2) — y1(2)) da).

Example. Solve the following differential equations.
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Solution. We observe that the equation is Riccati and a particular solution is
y1 = 1. So, from the transformation
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which is a first order linear differential equation. Integrating factor for linear
equation is obtained as

Az) = e”.

So, the general solution of linear equation is
u(z) =z —2+ce” .
Since y = 1 + —, general solution of given Riccati equation is obtained as
u
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2.9. Substitutions

We note that a differential equation which looks different from any of those that
we have studied, may be solved easily by a change of variables. However, we
can not give any rule.

Example. Solve the following differential equations.
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Solution. Let v = L So, we have
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Hence, given equation becomes
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which is a separable equation. Integration by parts yields
—ve '+e V' =x+c.

Since v = £7 we obtain the solution of given equation as
x
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