CHAPTER 2. FIRST ORDER DIFFERENTIAL EQUATIONS

2.10. Lagrange-Clairaut Equations

Definition. A differential equation of the form

$$
\begin{equation*}
y=x f\left(y^{\prime}\right)+g\left(y^{\prime}\right) \tag{1}
\end{equation*}
$$

is called Lagrange differential equation.
Let $p=y^{\prime}$. Then from equation (1) we have

$$
\begin{equation*}
y=x f(p)+g(p) \tag{2}
\end{equation*}
$$

Differentiating equation (2) with respect to x, we get

$$
y^{\prime}=p=f(p)+x f^{\prime}(p) \frac{d p}{d x}+g^{\prime}(p) \frac{d p}{d x}
$$

or

$$
p-f(p)=\left(x f^{\prime}(p)+g^{\prime}(p)\right) \frac{d p}{d x}
$$

Solving for p^{\prime}, we have

$$
\begin{equation*}
\frac{d p}{d x}=\frac{p-f(p)}{x f^{\prime}(p)+g^{\prime}(p)}, p=p(x) \tag{3}
\end{equation*}
$$

Let us assume that we can invert this function to find $x=x(p)$. Then from equatin (3) we get

$$
\frac{d x}{d p}=\frac{x f^{\prime}(p)+g^{\prime}(p)}{p-f(p)}, p-f(p) \neq 0
$$

or

$$
\begin{equation*}
\frac{d x}{d p}-\frac{f^{\prime}(p)}{p-f(p)} x=\frac{g^{\prime}(p)}{p-f(p)} \tag{4}
\end{equation*}
$$

which is a first order linear equation for $x(p)$.
Solving equation (4) it is obtained a family of solutions

$$
x=F(p, c)
$$

where c is an arbitrary integration constant. Using equation (2) one might be able to eliminate p to obtain a family of solutions of the Lagrange equation in the form

$$
\varphi(x, y, c)=0
$$

If it is not possible to eliminate p, then a parametric family of solutions with parameter p is obtained as

$$
\left\{\begin{array}{c}
x=F(p, c) \\
y=F(p, c) f(p)+g(p)
\end{array}\right.
$$

We assumed that $p-f(p) \neq 0$. However, there might also be solutions of Lagrange's equation for which $p-f(p)=0$. Such solutions ara called singular solutions. To find singular solutions solve $p-f(p)=0$ for p. Then substitute into equation (2).
Example. Solve the following differential equations.
1)

$$
y=\frac{3}{2} x y^{\prime}+e^{y^{\prime}}
$$

Solution. Denote $y^{\prime}=p$. So, we have Lagrange equation

$$
y=\frac{3}{2} x p+e^{p} .
$$

Differentiating both sides of Lagrange equation with respect to x, we obtain

$$
y^{\prime}=p=\frac{3}{2} p+\frac{3}{2} x \frac{d p}{d x}+e^{p} \frac{d p}{d x}
$$

or

$$
-\frac{1}{2} p=\left(\frac{3}{2} x+e^{p}\right) \frac{d p}{d x}
$$

Inverting this equality we obtain linear equation

$$
\frac{d x}{d p}+\frac{3}{p} x=-\frac{2}{p} e^{p}, p \neq 0
$$

The integrating factor for linear equation is

$$
\lambda(p)=p^{3}
$$

So, the general solution of linear equation is

$$
x=-\frac{2 e^{p}}{p^{3}}\left(p^{2}-2 p+2\right)+\frac{c}{p^{3}} .
$$

Thus, the general solution of Lagrange equation in parametric form

$$
\left\{\begin{array}{l}
x=-\frac{2 e^{p}}{p}+\frac{4 e^{p}}{p^{2}}-\frac{4 e^{p}}{p^{3}}+\frac{c}{p^{3}} \\
y=\frac{3}{2} x p+e^{p}
\end{array}\right.
$$

If $p=0$, then singular solution is obtained as $y=1$.
2)

$$
y=x\left(1+y^{\prime}\right)+y^{\prime 2}
$$

3)

$$
y=x\left(p^{2}+2 p\right)-\left(p^{2}+2 p-1\right)
$$

Definition. The differential equation in the form

$$
\begin{equation*}
y=x y^{\prime}+g\left(y^{\prime}\right) \tag{5}
\end{equation*}
$$

is called Clairaut equation.
Letting $y^{\prime}=p$ equation (5) is written as

$$
y=x p+g(p) .
$$

The Clairaut equation is a particular case of the Lagrange equation. Differentiating both sides od Clairaut equation with respect x, we get

$$
p=p+x \frac{d p}{d x}+g^{\prime}(p) \frac{d p}{d x}
$$

or

$$
\left(x+g^{\prime}(p)\right) \frac{d p}{d x}=0
$$

If $\frac{d p}{d x}=0$, then we get $p=c$. So, we find the general solution

$$
y=c x+g(c) .
$$

Solving $x+g^{\prime}(p)=$ for p and substituting into Clairaut equation, the singular solution is obtained as

$$
y=x p+g(p)
$$

Example. Solve the following differential equations.
1)

$$
y=x y^{\prime}+\left(y^{\prime}\right)^{2}
$$

Solution. Letting $y^{\prime}=p$ we get Clairaut equation

$$
y=x p+p^{2}
$$

Differentiating both sides with respect to x, we have

$$
(x+2 p) \frac{d p}{d x}=0
$$

If $\frac{d p}{d x}=0$, then $p=c$ and the general solution of Clairaut is

$$
y=c x+c^{2}
$$

If $x+2 p=0$, then $p=-\frac{x}{2}$ and singular solution is

$$
y=-\frac{x^{2}}{4} .
$$

2)

$$
y=x y^{\prime}+\sqrt{1+\left(y^{\prime}\right)^{2}}
$$

3)

$$
y=x y^{\prime}+\sin y^{\prime}
$$

