CHAPTER 4. HIGHER ORDER LINEAR DIFFERENTIAL EQUATIONS

4.1. Basic Theory

Definition 1. A linear ordinary differential equation of order n in the dependent variable y and in the independent variable x is in the form

$$
\begin{equation*}
a_{0}(x) \frac{d^{n} y}{d x^{n}}+a_{1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\ldots+a_{n-1}(x) \frac{d y}{d x}+a_{n}(x) y=F(x) \tag{1}
\end{equation*}
$$

where a_{0} is not identically zero.
If $F(x)$ is identically zero, then equation (1) reduces to

$$
\begin{equation*}
a_{0}(x) \frac{d^{n} y}{d x^{n}}+a_{1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\ldots+a_{n-1}(x) \frac{d y}{d x}+a_{n}(x) y=0 \tag{2}
\end{equation*}
$$

Equation (2) is called homogeneous equation associated with (1).
Example 1) The equation

$$
\frac{d^{3} y}{d x^{3}}+2 x \frac{d^{2} y}{d x^{2}}+y=\sin x
$$

is a third order variable cofficient nonhomogeneous linear differential equation.
The equation

$$
\frac{d y^{3}}{d x^{3}}+3 \frac{d y}{d x}-2 y=0
$$

is a third order constant coefficient homogeneous linear differential equation.
Theorem 1. Consider the $n t h$ order linear differential equation (1). Let x_{0} be any point of the interval $[a, b]$ and $c_{1}, c_{2}, \ldots, c_{n}$ be n arbitrary real constants. If $a_{0}(x) \neq 0$ for every $x \in[a, b]$, then there exits a unique solution f such that

$$
f\left(x_{0}\right)=c_{1}, f^{\prime}\left(x_{0}\right)=c_{2}, \ldots, f^{(n-1)}\left(x_{0}\right)=c_{n}
$$

and this solution is defined over the interval $[a, b]$.
Example 2. Consider the initial value problem

$$
\frac{d^{3} y}{d x^{3}}+2 x \frac{d^{2} y}{d x^{2}}+x^{2} y=e^{x} ; y(1)=1, y^{\prime}(1)=2 ; y^{\prime \prime \prime}(1)=1
$$

The coefficients $1,2 x, x^{2}$ and the nonhomogeneous term e^{x} are continuous for all $x \in(-\infty, \infty)$. Moreover the point $x_{0}=1 \in(-\infty, \infty)$. So, by Theorem 1 given initial value problem has a unique solution which is defined on $(-\infty, \infty)$.

Corollary 1. Let f be a solution of the $n t h$ order homogeneoue linear differential equation (2) such that

$$
f\left(x_{0}\right)=f^{\prime}\left(x_{0}\right)=f^{\prime \prime}\left(x_{0}\right)=\ldots=f^{(n-1)}\left(x_{0}\right)=0, x_{0} \in[a, b] .
$$

Then $f(x) \equiv 0$ for all x on $[a, b]$.
Example 3.Let us consider the differential equation

$$
\frac{d^{3} y}{d x^{3}}+2 x \frac{d^{2} y}{d x^{2}}+x^{2} y=0
$$

with

$$
y(0)=y^{\prime}(0)=y^{\prime \prime}(0)=0
$$

By Corollary 1, the unique solution of this initial value problem is $y \equiv 0$.
Definition 2. If $f_{1}, f_{2}, \ldots, f_{m}$ are given functions and $c_{1}, c_{2}, \ldots, c_{m}$ are constants, then the expression

$$
c_{1} f_{1}+c_{2} f_{2}+\ldots+c_{m} f_{m}
$$

is called a linear combination of $f_{1}, f_{2}, \ldots, f_{m}$.
Theorem 2. Any linear combination of solutions of the homogeneous linear differential equation (2) on $[a, b]$ is also solution on $[a, b]$.
Proof. Let us define

$$
f(x)=\sum_{i=1}^{m} c_{i} f_{i}
$$

Then we have

$$
L(D) \sum_{i=1}^{m} c_{i} f_{i}=\sum_{i=1}^{m} c_{i} L(D)\left(f_{i}\right)=0
$$

Example 4. It is easy to see that $\sin 2 x$ and $\cos 2 x$ are solutions of the differential equation

$$
y^{\prime \prime}+4 y=0
$$

By Theorem 2

$$
c_{1} \cos x+c_{2} \sin x
$$

is also solution.
Definition 3. If there exist constant $c_{1}, c_{2}, \ldots, c_{n}$ not all zero such that

$$
c_{1} f_{1}(x)+c_{2} f_{2}(x)+\ldots+c_{n} f_{n}(x)=0
$$

for all $x \in[a, b]$, then the functions $f_{1}, f_{2}, \ldots, f_{n}$ are called linearly dependent on $[a, b]$.

If the relation

$$
c_{1} f_{1}(x)+c_{2} f_{2}(x)+\ldots+c_{n} f_{n}(x)=0
$$

implies that $c_{1}=c_{2}=\ldots=c_{n}=0$, then $f_{1}, f_{2}, \ldots, f_{n}$ are called linearly independent.

Example 5. The functions $\left\{1, x, x^{2}\right\}$ are linearly independent since

$$
c_{1}+c_{2} x+c_{3} x^{2}=0
$$

implies that $c_{1}=c_{2}=c_{3}=0$.
The functions $\left\{e^{x},-2 e^{x}\right\}$ are linearly dependent since the relation

$$
c_{1} e^{x}+c_{2}\left(-2 e^{x}\right)=0
$$

is also satisfied when $c_{1} \neq 0$ and $c_{2} \neq 0$. For example, we can take $c_{1}=2$ and $c_{2}=1$.

Definition 4. Let $f_{1}, f_{2}, \ldots, f_{n}$ be real, $(n-1)$ times differentiable functions on $[a, b]$. The determinant

$$
\left|\begin{array}{cccc}
f_{1} & f_{2} & \ldots & f_{n} \\
f_{1}^{\prime} & f_{2}^{\prime} & \ldots & f_{n}^{\prime} \\
\vdots & \vdots & & \vdots \\
f_{1}^{(n-1)} & f_{2}^{(n-1)} & \ldots & f_{n}^{(n-1)}
\end{array}\right|
$$

is called the Wronskian of the functions $f_{1}, f_{2}, \ldots, f_{n}$ and it is denoted by $W\left(f_{1}, f_{2}, \ldots, f_{n}\right)(x)$.

