CHAPTER 4. HIGHER ORDER LINEAR DIFFERENTIAL EQUATIONS

4.1. Basic Theory (Cont.)

We shall continue to investigate the properties of the following linear differential equations.

$$
\begin{equation*}
a_{0}(x) \frac{d^{n} y}{d x^{n}}+a_{1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\ldots+a_{n-1}(x) \frac{d y}{d x}+a_{n}(x) y=F(x) \tag{1}
\end{equation*}
$$

where a_{0} is not identically zero.

$$
\begin{equation*}
a_{0}(x) \frac{d^{n} y}{d x^{n}}+a_{1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\ldots+a_{n-1}(x) \frac{d y}{d x}+a_{n}(x) y=0 \tag{2}
\end{equation*}
$$

Theorem 3. Solutions $f_{1}, f_{2}, \ldots, f_{n}$ of equation (2) are linearly dependent on $[a, b]$ if and only if $W\left(f_{1}, f_{2}, \ldots, f_{n}\right)=0$ for all $x \in[a, b]$.

Theorem 4. Let $f_{1}, f_{2}, \ldots, f_{n}$ be a set of n solutions of equation (2). Then either $W\left(f_{1}, f_{2}, \ldots, f_{n}\right) \equiv 0$ for all $x \in[a, b]$ or never zero in $[a, b]$.

Corollary 2. A necessary and sufficient condition that n solutions $f_{1}, f_{2}, \ldots, f_{n}$ of the $n t h$ order homogeneous linear differential equation (2) be linearly independent in $[a, b]$ is that

$$
W\left(f_{1}, f_{2}, \ldots, f_{n}\right) \neq 0 \text { for some } x \in[a, b]
$$

Remark 1. This relationship between Wronskian and linear independence no longer holds if the functions are not solution of a homogeneous linear differential equation.

Corollary 1. Let f be a solution of the $n t h$ order homogeneous linear differential equation (2) such that

$$
f\left(x_{0}\right)=f^{\prime}\left(x_{0}\right)=f^{\prime \prime}\left(x_{0}\right)=\ldots=f^{(n-1)}\left(x_{0}\right)=0, x_{0} \in[a, b]
$$

Then $f(x) \equiv 0$ for all x on $[a, b]$.
Theorem 5. The $n t h$ order homogeneous linear differential equation (2) has n linearly independent solutions. Furthermore any other solutions of (2) can be written as a linear combination

$$
c_{1} f_{1}+c_{2} f_{2}+\ldots+c_{n} f_{n}
$$

of those n linearly independent solutions for suitable constants $c_{1}, c_{2}, \ldots, c_{n}$.

Definition 5. If $f_{1}, f_{2}, \ldots, f_{m}$ are n linearly independent solutions of the $n t h$ order homogeneous linear differential equation (2) on $[a, b]$, then the set $\left\{f_{1}, f_{2}, \ldots, f_{n}\right\}$ is called the fundamental set of the solutions of (2) and the function defined by

$$
f(x)=c_{1} f_{1}(x)+c_{2} f_{2}(x)+\ldots+c_{n} f_{n}(x), x \in[a, b]
$$

where $c_{1}, c_{2}, \ldots, c_{n}$ are arbitrary constants, is called the general solution of (2) on $[a, b]$.

Example 6. Let us consider the third order linear homogeneous differential equation

$$
\frac{d^{3} y}{d x^{3}}-6 \frac{d^{2} y}{d x^{2}}+11 \frac{d y}{d x}-6=0
$$

It is clear that the functions $e^{x}, e^{2 x}, e^{3 x}$ are the solutions of the given differential equation. Moreover, these functions are linearly independent on every real interval since

$$
W\left(e^{x}, e^{2 x}, e^{3 x}\right)(x)=\left|\begin{array}{ccc}
e^{x} & e^{2 x} & e^{3 x} \\
e^{x} & 2 e^{2 x} & 3 e^{3 x} \\
e^{x} & 4 e^{2 x} & 9 e^{3 x}
\end{array}\right| \neq 0
$$

So, the fundamental set of solutions is $\left\{e^{x}, e^{2 x}, e^{3 x}\right\}$ and the general solution is

$$
c_{1} e^{x}+c_{2} e^{2 x}+c_{3} e^{3 x}
$$

Theorem 6. Let g be any solution of the nonhomogeneous differential equation (1) and f be any solution of corresponding homogeneous differential equation (2). Then

$$
f+g
$$

is also a solution of equation (1).
Definition 6. The general solution of (2) is called the complementary function of equation (1). Any solution of equation (1) involving no arbitrary constants is called a particular solution of equation (1). If y_{c} is the complementary function, y_{p} is a particular solution then the solution

$$
y_{c}+y_{p}
$$

is called the general solution of (1).
Example 7. Let us consider the third order linear nonhomogeneous differential equation

$$
\frac{d^{3} y}{d x^{3}}-6 \frac{d^{2} y}{d x^{2}}+11 \frac{d y}{d x}-6=e^{-x}
$$

By Example 6 we know that the complementary function is

$$
y_{c}=c_{1} e^{x}+c_{2} e^{2 x}+c_{3} e^{3 x} .
$$

Moreover it can be seen that a particular solution of given differential equation is

$$
y_{p}=-\frac{1}{24} e^{-x}
$$

So, the general solution of given differential equation is

$$
y=c_{1} e^{x}+c_{2} e^{2 x}+c_{3} e^{3 x}-\frac{1}{24} e^{-x}
$$

Example 8. Show that the general solution of the differential equation

$$
\frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}=e^{x} \sin 2 x
$$

is

$$
y=c_{1}+c_{2} e^{2 x}-\frac{1}{5} e^{x} \sin 2 x
$$

