CHAPTER 4. HIGHER ORDER LINEAR DIFFERENTIAL EQUATIONS

4.2. Homogeneous Constant Coefficient Equations

In this section we consider homogeneous linear differential equations of the form

$$
\begin{equation*}
a_{0} \frac{d^{n} y}{d x^{n}}+a_{1} \frac{d^{n-1} y}{d x^{n-1}}+\ldots+a_{n-1} \frac{d y}{d x}+y=0 \tag{1}
\end{equation*}
$$

where a_{0} is not identically zero and $a_{0}, a_{1}, \ldots a_{n}$ are real constants.
Assume that $y=e^{m x}$ is a solution of equation (1). Then we have

$$
e^{m x}\left(a_{0} m^{n}+a_{1} m^{n-1}+\ldots+a_{n-1} m+a_{n}\right) \equiv 0
$$

Since $e^{m x} \neq 0$, we obtain the equation in the unknown m

$$
\begin{equation*}
a_{0} m^{n}+a_{1} m^{n-1}+\ldots+a_{n-1} m+a_{n}=0 \tag{2}
\end{equation*}
$$

which is called the characteristic equation of the given equation (1). Now, we have three cases.

Theorem 1. If the characteristic equation (2) has n distinct real roots $m_{1}, m_{2}, \ldots, m_{n}$, then the general solution of (1) is

$$
y=c_{1} e^{m_{1} x}+c_{2} e^{m_{2} x}+\ldots+c_{n} e^{m_{n} x}
$$

where $c_{1}, c_{2}, \ldots, c_{n}$ are arbitrary constants.
Example 1.Find the general solution of the following differential equation

$$
\frac{d^{3} y}{d x^{3}}-\frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}=0 .
$$

Solution. The characteristic equation of given differential equation is

$$
m^{3}-m^{2}-2 m=0
$$

Hence, we obtain that $m_{1}=0, m_{2}=2$ and $m_{3}=-1$. The roots are real and distinct. So, the general solution is

$$
y=c_{1}+c_{2} e^{2 x}+c_{3} e^{-x}
$$

Theorem 2. (i) If the characteristic equation (2) has the real root m occuring k times and the remainig roots are distinct and real, then the general solution of the equation (1) is

$$
y=\left(c_{1}+c_{2} x+c_{3} x^{2}+\ldots+c_{k} x^{k-1}\right) e^{m x}+c_{k+1} e^{m_{m+1} x}+\ldots+c_{n} e^{m_{n} x}
$$

Example 2. Find the general solution of the following differential equation

$$
\frac{d^{4} y}{d x^{4}}-5 \frac{d^{3} y}{d x^{3}}+6 \frac{d^{2} y}{d x^{2}}+4 \frac{d y}{d x}-8 y=0
$$

Solution. The characteristic equation of given differential equation is

$$
m^{4}-5 m^{3}+6 m^{2}+4 m-8=0
$$

Hence, we obtain that $m_{1}=m_{2}=m_{3}=2$ and $m_{4}=-1$. So, the general solution is

$$
y=e^{2 x}\left(c_{1}+c_{2} x+c_{3} x^{2}\right)+c_{4} e^{-x}
$$

Theorem 3. (i) If the characteristic equation (2) has the conjugate complex roots $a \pm i b$, then the corresponding part of the general solution is

$$
y=e^{a x}\left(c_{1} \cos b x+c_{2} \sin b x\right)
$$

(ii) If $a \pm i b$ are each k-fold roots of the characteristic equation (2), then the corresponding part of the general solution is

$$
y=e^{a x}\left[\left(c_{1}+c_{2} x+\ldots+c_{k} x^{k-1}\right) \cos b x+\left(c_{k+1}+c_{k+2} x+\ldots+c_{2 k} x^{k-1}\right) \sin b x\right] .
$$

Example 3. Solve the initial value problem

$$
\frac{d^{2} y}{d x^{2}}-6 \frac{d y}{d x}+25 y=0, y(0)=-3, y^{\prime}(0)=-1
$$

Solution. The characteristic equation of given differential equation is

$$
m^{2}-6 m+25=0
$$

So, the roots are $m_{1,2}=3 \pm 4 i$ and the general solution of given differential equation is

$$
e^{3 x}\left(c_{1} \cos 4 x+c_{2} \sin 4 x\right)
$$

Applying the initial condition $y(0)=-3$, we get $c_{1}=-3$. From the other condition $y^{\prime}(0)=-1$, we obtain $c_{2}=2$. So, the solution of given initial value problem is

$$
e^{3 x}(-3 \cos 4 x+2 \sin 4 x)
$$

Example. Find the general solutions of following differential equations.
1)

$$
\frac{d^{4} y}{d x^{4}}-9 \frac{d^{2} y}{d x^{2}}+20 y=0
$$

2)

$$
\frac{d^{4} y}{d x^{4}}-2 \frac{d^{3} y}{d x^{3}}+2 \frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}+y=0
$$

3)

$$
\frac{d^{6} y}{d x^{6}}-5 \frac{d^{4} y}{d x^{4}}+16 \frac{d^{3} y}{d x^{3}}+36 \frac{d^{2} y}{d x^{2}}-16 \frac{d y}{d x}-32 y=0
$$

