CHAPTER 4. HIGHER ORDER LINEAR DIFFERENTIAL EQUATIONS

4.3. The Method of Undetermined Coefficients

In this section we consider nonhomogeneous linear differential equations of the form

$$
\begin{equation*}
a_{0} \frac{d^{n} y}{d x^{n}}+a_{1} \frac{d^{n-1} y}{d x^{n-1}}+\ldots+a_{n-1} \frac{d y}{d x}+y=f(x) \tag{1}
\end{equation*}
$$

where a_{0} is not identically zero and $a_{0}, a_{1}, \ldots a_{n}$ are real constants.
Recall that the general solution of equation (1) is

$$
y=y_{c}+y_{p}
$$

where y_{c} is the complementary function, that is, the general solution pf corresponding homogeneous equation, y_{p} is a particular solution of equation (1).

Now, we consider methods of determining a particular solutions.
Definition 1.If a function defined by one of the following forms or defined as a finite product of two or more functions of these types, then the function is called a UC function:
(i) x^{n}, where n is a positive integer or zero.
(ii) $e^{a x}$, where a is a constant.
(iii) $\sin (a x+b)$ ar $\cos (a x+b)$, where a and b are constants, $a \neq 0$.

Remark 1. The method of undetermined coefficients applied when the nonhomogeneous term $f(x)$ in the differential equation (1) is a finite linear combination of UC functions.

Definition 2. Consider a UC function f. The set of functions consisting of f itself and successive derivatives of f is called UC set of f.
Example 1. $f(x)=x^{3}$ is a UC function. UC set:

$$
S=\left\{x^{3}, x^{2}, x, 1\right\}
$$

Method:

Step 1. Solve the homogeneous equation and write fundamental set of solutions.

Step 2. Find UC set of f.
Step 3. If the UC set of f includes one or more members of fundamental set of solutions, then multiply each member of S by the lowest positive integer
power of x. So, the new set does not inclede any member of fundamental set of solutions.

Step 4. The linear combination of the members of S_{1} is the form of particular solution.

Example 2. Find the general solution of the differential equation

$$
\frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}-3 y=e^{x}-10 \sin x
$$

Solution. The characteristic equation of the corresponding differential equation is

$$
m^{2}-2 m-3=0
$$

So, the roots are $m_{1}=3, m_{2}=-1$ and the complementary function is

$$
y_{c}=c_{1} e^{3 x}+c_{2} e^{-x}
$$

Then the fundamental set of solutions is

$$
F S S=\left\{e^{3 x}, e^{-x}\right\}
$$

The UC set of e^{x} is $S_{1}=\left\{e^{x}\right\}$; the UC set of $\sin x$ is $S_{2}=\{\sin x, \cos x\}$. So, the UC set is

$$
S=S_{1} \cup S_{2}=\left\{e^{x}, \sin x, \cos x\right\} .
$$

Since the UC set S does not include any member of fundamental set, the particular solution may be in the form

$$
y_{p}=A e^{x}+B \sin x+C \cos x
$$

where the constants A, B and C will be determined. Now, substituting y_{p} and its derivatives into given differential equation we have

$$
-4 A e^{x}+(-4 B+2 C) \sin x+(-4 C-2 B) \cos x \equiv 2 e^{x}-10 \sin x
$$

Equating coefficients of these like terms, we obtain the equations

$$
-4 A=2, \quad-4 B+2 C=-10, \quad-4 C-2 B=0
$$

So, we have

$$
A=-\frac{1}{2}, B=2, C=-1
$$

Hence the particular solution is

$$
y_{p}=-\frac{1}{2} e^{x}+2 \sin x-\cos x
$$

and the general solution is

$$
y=c_{1} e^{3 x}+c_{2} e^{-x}-\frac{1}{2} e^{x}+2 \sin x-\cos x
$$

Example. Find the general solutions of following differential equations.
1)

$$
\frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}+2 y=x+1
$$

2)

$$
\frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}-2 y=x e^{x}
$$

3)

$$
\frac{d^{3} y}{d x^{3}}+\frac{d^{2} y}{d x^{2}}-4 \frac{d y}{d x}-4 y=8 x+8+6 e^{-x}
$$

