CHAPTER 4. HIGHER ORDER LINEAR DIFFERENTIAL EQUATIONS

4.4. An Operator Method

In this section we consider nonhomogeneous linear differential equations of the form

$$
\begin{equation*}
a_{0} \frac{d^{n} y}{d x^{n}}+a_{1} \frac{d^{n-1} y}{d x^{n-1}}+\ldots+a_{n-1} \frac{d y}{d x}+y=f(x) \tag{1}
\end{equation*}
$$

where a_{0} is not identically zero and $a_{0}, a_{1}, \ldots a_{n}$ are real constants.
If $f(x)$ is a UC function, then operator method can be used to find a particular solution of equation (1).
By using the linear differential operator

$$
L(D)=a_{0} D^{n}+a_{1} D^{n-1}+\ldots+a_{n-1} D+a_{n}
$$

equation (1) can be written as

$$
L(D) y=f(x)
$$

So, if y_{p} is a particular solution of equation (1), then y_{p} should be satisfy the equation

$$
y_{p}=\frac{1}{L(D)} f(x)
$$

Theorem 1. Let a be a real number.
(i) Then

$$
\frac{1}{L(D)}\left\{e^{a x}\right\}=e^{a x} \frac{1}{L(a)}, \text { if } L(a) \neq 0
$$

(ii) If $L(a)=0$, then

$$
\frac{1}{L(D)}\left\{e^{a x}\right\}=e^{a x} \frac{1}{L(D+a)} .
$$

Theorem 2. Let $f(x)$ be a polynomial with degree m. Then

$$
\frac{1}{L(D)}\{f(x)\}=\left(\sum_{i=0}^{m} c_{i} D^{i}\right)(f(x)) .
$$

Theorem 3. For $m \in \mathbb{R}$

$$
\frac{1}{L(D)}\left\{e^{m x} F(x)\right\}=e^{m x} \frac{1}{L(D+m)}\{F(x)\}
$$

Theorem 4. Assume that $a \in \mathbb{R}$ and $L\left(-a^{2}\right) \neq 0$. Then

$$
\begin{aligned}
\frac{1}{L\left(D^{2}\right)}\{\sin (a x+b)\} & =\frac{1}{L\left(-a^{2}\right)}\{\sin (a x+b)\} \\
\frac{1}{L\left(D^{2}\right)}\{\cos (a x+b)\} & =\frac{1}{L\left(-a^{2}\right)}\{\cos (a x+b)\}
\end{aligned}
$$

Remark 1. If $L\left(-a^{2}\right)=0$, then use the equality

$$
e^{i a x}=\cos a x+i \sin a x
$$

then apply Theorem 1.
Example 1. Find the general solution of the differential equation

$$
\frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}-3 y=e^{x}
$$

Solution. The characteristic equation of the corresponding differential equation is

$$
m^{2}-2 m-3=0
$$

So, the roots are $m_{1}=3, m_{2}=-1$ and the complementary function is

$$
\begin{aligned}
y_{c} & =c_{1} e^{3 x}+c_{2} e^{-x} \\
y_{p} & =\frac{1}{D^{2}-2 D-3} e^{x}
\end{aligned}
$$

Since $\frac{1}{L(1)} \neq 0$, by Theorem 1, we have

$$
y_{p}=-\frac{1}{4} e^{x}
$$

So, the general solution is

$$
y=c_{1} e^{3 x}+c_{2} e^{-x}-\frac{1}{4} e^{x}
$$

Example 2. Find a particular solution of the differential equation

$$
\frac{d^{2} y}{d x^{2}}+5 \frac{d y}{d x}-2 y=1-x
$$

Solution.

$$
\begin{aligned}
y_{p} & =\frac{1}{D^{2}+5 D-2}(1-x) \\
& =-\frac{1}{2} \frac{1}{1-\frac{D^{2}+5 D}{2}}(1-x) \\
& =-\frac{1}{2}\left(1+\frac{D^{2}+5 D}{2}+\ldots\right)(1-x) \\
& =-\frac{1}{2}\left(1-x-\frac{5}{2}\right) \\
& =\frac{x}{2}+\frac{3}{4} .
\end{aligned}
$$

Example. Find the general solutions of following differential equations.
1)

$$
\frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}+2 y=x+1
$$

2)

$$
\frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}-2 y=x e^{x}
$$

3)

$$
\frac{d^{3} y}{d x^{3}}+\frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}+y=\sin 2 x+\cos 3 x
$$

