CHAPTER 4. HIGHER ORDER LINEAR DIFFERENTIAL EQUATIONS

4.4. An Operator Method

In this section we consider nonhomogeneous linear differential equations of the
form
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where ag is not identically zero and ag, a1, ...a,, are real constants.

If f(z) is a UC function, then operator method can be used to find a particular
solution of equation (1).

By using the linear differential operator
L(D) = agD™ 4+ a;D" ' + ...+ a,_1D +a,

equation (1) can be written as

So, if y, is a particular solution of equation (1), then y, should be satisfy the
equation

Yp = mf(x)

Theorem 1. Let a be a real number.
(i) Then
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(ii) If L(a) = 0, then

1 ar\ __ ,ax 1
o = T

Theorem 2. Let f(z) be a polynomial with degree m. Then
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Theorem 3. For m € R
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Theorem 4. Assume that a € R and L(—a?) # 0. Then

1 ) 1 .
m{sm(ax + b)} = m{sm(am =+ b)}
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3 {cos(ax +b)} = m{cos(ax +0)}

Remark 1. If L(—a?) = 0, then use the equality

h

'™ = cosaz + isinax

then apply Theorem 1.
Example 1. Find the general solution of the differential equation
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Solution. The characteristic equation of the corresponding differential equation
is
m? —2m — 3 = 0.
So, the roots are m; = 3, mo = —1 and the complementary function is

Ye = c1€°% + coe T,
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Since m = 0, by Theorem 1, we have
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So, the general solution is
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y=c1e’ +coe " — Zex.
Example 2. Find a particular solution of the differential equation
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Example. Find the general solutions of following differential equations.
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Py | dy

— 4+ 2= 42y = 1

d$2+ da:+ y=ot
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Py dy

da:2+dx y=ze
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d3 d? d
T;;+d7;;+ﬁ+y:sin2x+cos3x.



