CHAPTER 4. HIGHER ORDER LINEAR DIFFERENTIAL EQUATIONS

4.5. The Method of Variation of Parameters

In this section we consider a general method of determining a particular solution of the equation

$$
\begin{equation*}
a_{0}(x) \frac{d^{2} y}{d x^{2}}+a_{1}(x) \frac{d y}{d x}+a_{2}(x) y=f(x) \tag{1}
\end{equation*}
$$

where the functions $a_{0}(x), a_{1}(x)$ and $a_{2}(x)$ are continuous on the interval $[a, b]$. Suppose that y_{1} and y_{2} are linearly independent solutions of the corresponding homogeneous equation

$$
\begin{equation*}
a_{0}(x) \frac{d^{2} y}{d x^{2}}+a_{1}(x) \frac{d y}{d x}+a_{2}(x) y=0 \tag{2}
\end{equation*}
$$

Then the complementary function of equation (2) is

$$
y_{c}=c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

The procedure in the method of variation of parameters is to replace the arbitrary constants c_{1} and c_{2} by the functions $v_{1}(x)$ and $v_{2}(x)$ which will be determined so that the resulting function

$$
\begin{equation*}
y_{p}=v_{1}(x) y_{1}(x)+v_{2}(x) y_{2}(x) \tag{3}
\end{equation*}
$$

will be a particular solution of equation (1). It can be seen that to determine $v_{1}(x)$ and $v_{2}(x)$, we have the following system of equations

$$
\begin{align*}
v_{1}^{\prime}(x) y_{1}(x)+v_{2}^{\prime}(x) y_{2}(x) & =0 \tag{4}\\
v_{1}^{\prime}(x) y_{1}^{\prime}(x)+v_{2}^{\prime}(x) y_{2}^{\prime}(x) & =\frac{f(x)}{a_{0}(x)}
\end{align*}
$$

for unknown functions v_{1}^{\prime} and v_{2}^{\prime}.
Since y_{1} and y_{2} are linearly independent solutions of equation (2), the determinant of coefficients of this system

$$
\begin{aligned}
W\left(y_{1}(x), y_{1}(x)\right) & =\left|\begin{array}{cc}
y_{1}(x) & y_{2}(x) \\
y_{1}^{\prime}(x) & y_{2}^{\prime}(x)
\end{array}\right| \\
& =y_{1} y_{2}^{\prime}-y_{2} y_{1}^{\prime} \\
& \neq 0
\end{aligned}
$$

By Cramer's Rule, the solution of system (4) is obtained as

$$
v_{1}^{\prime}(x)=\frac{1}{W\left(y_{1}(x), y_{1}(x)\right)}\left|\begin{array}{cc}
0 & y_{2}(x) \\
\frac{f(x)}{a_{0}(x)} & y_{2}^{\prime}(x)
\end{array}\right|
$$

$$
v_{2}^{\prime}(x)=\frac{1}{W\left(y_{1}(x), y_{1}(x)\right)}\left|\begin{array}{cc}
y_{1}(x) & 0 \\
y_{1}^{\prime}(x) & \frac{f(x)}{a_{0}(x)}
\end{array}\right|
$$

Integrating $v_{1}^{\prime}(x)$ and $v_{2}^{\prime}(x)$, we can find $v_{1}(x)$ and $v_{2}(x)$. So, the particular solution of equation (1) is

$$
y_{p}(x)=v_{1}(x) y_{1}(x)+v_{2}(x) y_{2}(x)
$$

Remark 1. This method can be apply higher order differential equations. Let us consider

$$
\frac{d^{3} y}{d x^{3}}+a(x) \frac{d^{2} y}{d x^{2}}+b(x) \frac{d y}{d x}+c(x) y=f(x)
$$

The particular solution of this equation will be in the form

$$
y_{p}=v_{1}(x) y_{1}(x)+v_{2}(x) y_{2}(x)+v_{3}(x) y_{3}(x),
$$

where y_{1}, y_{2} and y_{3} are linearly independent solutions of corresponding homogeneous equation. Similarly, from the following system $v_{1}^{\prime}, v_{2}^{\prime}$ and v_{3}^{\prime} can be found:

$$
\begin{aligned}
v_{1}^{\prime} y_{1}+v_{2}^{\prime} y_{2}+v_{3}^{\prime} y_{3} & =0 \\
v_{1}^{\prime} y_{1}^{\prime}+v_{2}^{\prime} y_{2}^{\prime}+v_{3}^{\prime} y_{3}^{\prime} & =0 \\
v_{1}^{\prime} y_{1}^{\prime \prime}+v_{2}^{\prime} y_{2}^{\prime \prime}+v_{3}^{\prime} y_{3}^{\prime \prime} & =f(x)
\end{aligned}
$$

Example 1. Find the general solution of the differential equation

$$
\frac{d^{2} y}{d x^{2}}+y=\cos e c x
$$

Solution. It can be easily seen that the complementary function is

$$
y_{c}=c_{1} \cos x+c_{2} \sin x
$$

So, the particular solution is in the form

$$
y_{p}=v_{1}(x) \cos x+v_{2}(x) \sin x .
$$

v_{1} and v_{2} should be satisfy the following system:

$$
\begin{aligned}
v_{1}^{\prime} \cos x+v_{2}^{\prime} \sin x & =0 \\
v_{1}^{\prime}(-\sin x)+v_{2}^{\prime}(\cos x) & =\frac{1}{\sin x}
\end{aligned}
$$

The determinanf of the coefficients of this system is

$$
\left|\begin{array}{cc}
\cos x & \sin x \\
-\sin x & \cos x
\end{array}\right|=1 \neq 0
$$

So,

$$
v_{1}^{\prime}(x)=\left|\begin{array}{cc}
0 & \sin x \\
\frac{1}{\sin x} & \cos x
\end{array}\right|=-1
$$

and

$$
v_{2}^{\prime}(x)=\left|\begin{array}{cc}
\cos x & 0 \\
-\sin x & \frac{1}{\sin x}
\end{array}\right|=\frac{\cos x}{\sin x}
$$

Integrating these equations we obtain

$$
v_{1}(x)=-x
$$

and

$$
v_{2}(x)=\ln (\sin x)
$$

Thus the particular solution is found as

$$
y_{p}=-x \cos x+\ln (\sin x) \sin x
$$

The general solution of given differential equation is

$$
y=c_{1} \cos (x)+c_{2} \sin x-x \cos x+\ln (\sin x) \sin x
$$

Example. Find the general solutions of following differential equations.
1)

$$
\frac{d^{2} y}{d x^{2}}-4 \frac{d y}{d x}+3 y=\frac{1}{1+e^{-x}}
$$

2)

$$
\frac{d^{3} y}{d x^{3}}+\frac{d^{2} y}{d x^{2}}-\frac{d y}{d x}-y=\frac{1}{\cos x}
$$

