ENE 505 — Applied Computational Fluid Dynamics in Renewable

Energy Technologies

WEEK 6: NUMERICAL DISCRETIZATION CONTINUES

NUMERICAL DISCRETIZATION (Continues):

e FEM:

- Discretization of domain
- Derive element equations
- Construct the variation formulation of the governing equations over an
element
- Obtain approximation of the variation equation over an element
(using Ritz or a Weighted Residual method such as Galerkin, Least Squares
etc)
- Assemble individual element equations for the whole problem
- Impose the boundary conditions of the problem
- Solve the assembled equations

- Post-processing of the results.

e FEM:

- Domain is divided into control volumes

- Integrate the differential equation over the control volume and apply the
divergence theorem.

- To evaluate derivative terms, values at the control volume faces are needed:
have to make an assumption about how the value varies.

- Result is a set of linear algebraic equations: one for each control volume.

- Solve iteratively or simultaneously.

- Using finite volume method, the solution domain is subdivided into a finite
number of small control volumes (cells) by a grid.

-The grid defines the boundaries of the control volumes while the computational

node lies at the center of the control volume.



FVM Discretization example:

- The species transport equation (constant density, incompressible flow) is given
by:
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Here ¢ is the concentration of the chemical species and D is the diffusion

coefficient. S is a source term.

- Discretize the above equation for a two-dimensional flow field, given in Figure 1.
for a control volume containing the point P by using finite volume method (FVM)
based central differencing scheme

and

- obtain a final simple algebraic form of this convection-diffusion equation.

- determine each coefficient in this final discretization equation
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- The differential equation above is converted into a solvable algebraic equations

under steady state assumption



- Convection term is balanced by the diffusion term

- The balance over the control volume is accomplished as:
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- The values at the faces are determined by interpolation from the values at the
the cell centers.
- The values at the faces are determined by using central differencing scheme.
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