Functions

Example

The area A of a circle depends on its radius r. The rule is

$$
A=\pi r^{2}
$$

We say that A is a function of r.

Functions

A function f from D to E is a rule that assigns to each element x in a set D exactly one element, called $f(x)$, in a set E.

Visualizing functions as arrow diagrams:

This example

- domain $D=\{a, b, z\}$
- $E=\{a, b, c, d\}$
- $f(a)=a$
- $f(b)=a$
- $f(z)=d$
- range $=\{a, d\}$

Terminology:

- $f(x)$ is the value of f at x
- domain of f is the set D
- range of f is the set of all possible values $f(x)$ for x in D

Functions as Machines

A function as a machine:

- domain = set of all possible inputs
- range $=$ set of all possible outputs

Example

Square $f(x)=x^{2}$:

- domain $=\mathbb{R}$
- range $=\{x \mid x \geq 0\}=[0, \infty)$

Square root $f(x)=\sqrt{x}$ (over real numbers):

- domain $=\{x \mid x \geq 0\}=[0, \infty)$
- range $=\{x \mid x \geq 0\}=[0, \infty)$

Visualizing Functions as Graphs

The graph of a function f is the set of pairs $\{(x, f(x)) \mid x \in D\}$

- set of all points (x, y) in the coordinate plane such that $y=f(x)$ and x is in the domain

Functions: Examples

What is $f(3)$?

- $f(3)=4$

What is the domain and range of this function?

- domain $=\{x \mid 1 \leq x \leq 4\}=[1,4]$
- range $=\{y \mid 1 \leq x \leq 5\}=[1,5]$

Functions: Examples

What is the domain and range of $f(x)=\sqrt{x+2}$?

- domain $=\{x \mid x \geq-2\}=[-2, \infty)$
- range $=\{y \mid y \geq 0\}=[0, \infty)$

What is the domain of $g(x)=\frac{1}{x^{2}-x}$?

$$
g(x)=\frac{1}{x^{2}-x}=\frac{1}{x(x-1)}
$$

Thus $g(x)$ is not defined if $x=0$ or $x=1$. The domain is

$$
\{x \mid x \neq 0, x \neq 1\}
$$

which can also be written as

$$
(-\infty, 0) \cup(0,1) \cup(1, \infty)
$$

Vertical Line Test

When does a curve represent a function?

Vertical Line Test

A curve in the $x y$-plane represents a function of x if and only if no vertical line intersects the curve more than once.

corresponds to a function of x

does not correspond to a function of x

Representations of Functions

Functions can be represented in four ways:

- verbally (a description in words)

Example: $A(r)$ is the area of a circle with radius r.

- numerically (a table of values)

r	1	2	3
$A(r)$	3.14159	12.56637	28.27433

- visually (a graph)

- algebraically (an explicit formula)

$$
A(r)=\pi r^{2}
$$

Piecewise Defined Functions

A piecewise defined function is defined by different formulas in parts of its domain.

$$
f(x)= \begin{cases}1-x & \text { if } x \leq-1 \\ x^{2} & \text { if } x>-1\end{cases}
$$

- point belongs to the graph
- point is not in the graph

Piecewise Defined Functions: Example

The absolute value function $f(x)=|x|$ is piecewise defined:

$$
|x|= \begin{cases}x & \text { if } x \geq 0 \\ -x & \text { if } x<0\end{cases}
$$

Piecewise Defined Functions: Example

Find a formula for the function f with the graph above.

$$
f(x)= \begin{cases}1-x & \text { if } 0 \leq x \leq 1 \\ x-1 & \text { if } 1<x \leq 3 \\ 2 & \text { if } x>3\end{cases}
$$

Symmetry

A function f is called

- even if $f(-x)=f(x)$ for every x in its domain, and
- odd if $f(-x)=-f(x)$ for every x in its domain.

an even function

an odd function
- even functions are mirrored around the y-axis
- odd functions are mirrored around the y-axis and x-axis (or mirrored through the point $(0,0)$)

Symmetry

How to remember what is even and odd?

Thick of power functions x^{n} with n a natural number:

- x^{n} is even if n is even
- x^{n} is odd if n is odd

Symmetry

Which of the following functions is even?

1. $f(x)=x^{5}+x$
2. $g(x)=1-x^{4}$
3. $h(x)=2 x-x^{2}$

We have:

1. $f(-x)=(-x)^{5}+(-x)=-x^{5}-x=-\left(x^{5}+x\right)=-f(x)$

Thus f is odd.
2. $g(-x)=1-(-x)^{4}=1-x^{4}=g(x)$

Thus g is even.
3. $h(-x)=2(-x)-(-x)^{2}=-2 x-x^{2}$

Thus h is neither even nor odd.
Note that:

- The sum of even functions is even (e.g. $1+x^{4}$).
- The sum of odd functions is odd (e.g. $x^{5}+x$).

Increasing and Decreasing Functions

A function f is increasing on an interval $/$ if

$$
f\left(x_{1}\right)<f\left(x_{2}\right) \quad \text { whenever } x_{1}<x_{2} \text { and } x_{1}, x_{2} \in I
$$

The function is decreasing on an interval I if

$$
f\left(x_{1}\right)>f\left(x_{2}\right) \quad \text { whenever } x_{1}<x_{2} \text { and } x_{1}, x_{2} \in I
$$

This function is:

- increasing on $[0,3]$
- decreasing on $[3,4]$
- increasing on $[4,6]$

Increasing and Decreasing Functions

The function $f(x)=x^{2}$ is:

- increasing on $[0, \infty)$
- decreasing on $(-\infty, 0]$

