Mathematical Models

A mathematical model is a mathematical description of a real-world phenomenon.

1. Formulate

Identify independent \& dependent variables, simplify and obtain equations (possibly guessing from measurements).
2. Solve

Apply mathematics such as calculus to derive conclusions.
3. Interpret

Interpret the model conclusions to predict the real-world.
4. Test

Compare predictions with reality (revise model if needed).

Linear Functions

A linear function is a function f that can be written in the form:

$$
f(x)=m x+b
$$

where m is the slope and b is the y-intercept.
The graph of a linear function is a line:

Linear Functions: Example

When dry air moves upward it expands and cools.

- ground temperature is 20°
- temperature in height of 1 km is 10°

Express the temperature as a linear function of the height h. What is the temperature in 2.5 km height?

Since we are looking for a linear function:

$$
T(h)=m h+b
$$

We know that:
$T(0)=m \cdot 0+b=20 \quad \Longrightarrow \quad b=20$
$T(1)=m \cdot 1+b=m \cdot 1+20=10 \quad \Longrightarrow \quad m=10-20=10$
Thus $T(h)=-10 m+20$, and $T(2.5)=-5^{\circ}$.

Polynomials

A function P is called polynomial if

$$
P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{2} x^{2}+a_{1} x+a_{0}
$$

where

- n is a non-negative integer, and
- $a_{0}, a_{1}, \ldots, a_{n}$ are constants, called coefficients.

If $a_{n} \neq 0$ then n is the degree of the polynomial.

$x^{4}-3 x^{2}+x$

Polynomials of Degree 1: Linear Functions

A polynomial of degree 1 is a linear function:

$$
f(x)=m x+b
$$

Find equations for the functions f, g and h :

- for $f: f(x)=\frac{1}{2} x-1$
- for $g: f(x)=2 x+1$
- for $h: f(x)=-\frac{1}{4} x+3$

Polynomials of Degree 2: Quadratic Functions

A polynomial of degree 2 is a quadratic function:

$$
f(x)=a x^{2}+b x+c
$$

The graph of is always a shifting of the parabola $a x^{2}$. It open upwards if $a>0$, and downwards if $a<0$.

Polynomials of Degree 3: Cubic Functions

A polynomial of degree 3 is a cubic function:

$$
f(x)=a x^{3}+b x^{2}+c x+d
$$

Power Functions

A function of the form

$$
f(x)=x^{a}
$$

where a is a constant, is called a power function.

Power Functions: Special Cases

We consider x^{n} with n a positive integer.

Power Functions: Special Cases

We consider x^{n} with n a positive integer.

- For even n the graph similar to the parabola x^{2}.
- For odd n the graph looks similar to x^{3}.

If n increases, then the graph of x^{n} becomes flatter near 0 , and steeper for $|x| \geq 1$.

Power Functions: Special Cases

We consider $x^{\frac{1}{n}}$ where n is a positive integer:

- $f(x)=x^{\frac{1}{n}}=\sqrt[n]{x}$ is a root function (square root for $n=2$)

- For even n the domain is $[0, \infty)$, the graph is similar to \sqrt{x}.
- For odd n the domain is \mathbb{R}, the graph is similar to $\sqrt[3]{x}$.

Power Functions: Special Cases

The power function $f(x)=x^{-1}=\frac{1}{x}$ is the reciprocal function.

This function arises in physics and chemistry. E.g. Boyle's law says that, when the temperature is constant, then the volume V of a gas is inversely proportional to the pressure P :

$$
V=\frac{C}{P}
$$

where C is a constant

Power Function: Applications

Power functions are used for modeling:

- the illumination as a function of the distance from a light source
- the period of the revolution of a planet as a function of the distance from the sun

Rational Functions

A rational function f is ratio of two polynomials:

$$
f(x)=\frac{P(x)}{Q(x)} \quad \text { where } P \text { and } Q \text { are polynomials }
$$

- the domain of $\frac{P(x)}{Q(x)}$ is $\{x \mid Q(x) \neq 0\}$

Algebraic Functions

A function f is called algebraic function if it can be constructed using algebraic operations (addition, subtraction, multiplication, division and taking roots) starting with polynomials.

$$
f(x)=\sqrt{x^{2}+1} \quad g(x)=\frac{x^{2}-16 x^{2}}{x+\sqrt{x}}+(x-2) \sqrt[3]{x+1}
$$

$x \sqrt{x+3}$

$\sqrt[4]{x^{2}-25}$

$x^{\frac{2}{3}}(x-2)^{2}$

Algebraic Functions: Real-wold Example

The following algebraic function occurs in the theory of relativity. The mass of an object with velocity v is:

$$
m=f(v)=\frac{m_{0}}{\sqrt{1-\frac{v^{2}}{c^{2}}}}
$$

where

- m_{0} is the rest mass of the object
- $c \approx 3.0 \cdot 10^{5} \frac{\mathrm{~km}}{\mathrm{~h}}$ is the speed of light (in vacuum)

Angles

Angles can be measured in degrees $\left({ }^{\circ}\right)$ or in radians (rad):

- $180^{\circ}=\pi \mathrm{rad}$
- $360^{\circ}=2 \pi$ rad is a full revolution

From $180^{\circ}=\pi$ rad we conclude

$$
\begin{aligned}
1^{\circ} & =\frac{\pi}{180} \text { rad } & \text { and } & x^{\circ}=\frac{x \cdot \pi}{180} \mathrm{rad} \\
1 \mathrm{rad} & =\left(\frac{180}{\pi}\right) \circ & \text { and } & x \operatorname{rad}=\left(\frac{x \cdot 180}{\pi}\right) \circ
\end{aligned}
$$

Angles: Radian

In Calculus, the default measurement for angles is radian.

Historical note on radians:

- consider a circle with radius 1, and
- an sector of this circle with angle α (radians)

Then the arc of the sector has length α (equal to the angle).

Trigonometric Functions

$\sin x$

$\cos x$

Trigonometric Functions

$\sin x$

Trigonometric Functions: Identities

$\sin x$

$\cos x$

Important identities:

Trigonometric Functions: Identities

$\sin x$

$\cos x$

Important identities:

- $\sin (-\alpha)=-\sin \alpha \quad$ and $\quad \cos (-\alpha)=\cos \alpha$

Trigonometric Functions: Identities

$\sin x$

$\cos x$

Important identities:

- $\sin (-\alpha)=-\sin \alpha$ and $\cos (-\alpha)=\cos \alpha$
- $\sin (\alpha+2 \pi)=\sin \alpha$ and $\cos (\alpha+2 \pi)=\cos \alpha$
- $\cos \alpha=\sin (\alpha \pm ?)$

Trigonometric Functions: Identities

$\sin x$

$\cos x$

Important identities:

- $\sin (-\alpha)=-\sin \alpha$ and $\cos (-\alpha)=\cos \alpha$
- $\sin (\alpha+2 \pi)=\sin \alpha$ and $\cos (\alpha+2 \pi)=\cos \alpha$
- $\cos \alpha=\sin \left(\alpha+\frac{\pi}{2}\right)$
- $\sin ^{2} \alpha+\cos ^{2} \alpha=1$ (follows form the Pythagorean theorem)

α	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2 \pi}{3}$	$\frac{3 \pi}{4}$	$\frac{5 \pi}{6}$	π	$\frac{3 \pi}{2}$	2π
$\sin \alpha$	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0	-1	0
$\cos \alpha$	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{1}{\sqrt{2}}$	$-\frac{\sqrt{3}}{2}$	-1	0	1

Trigonometric Functions: Tangent and Cotangent

The tangent and cotangent are defined as:

$$
\tan \alpha=\frac{\sin \alpha}{\cos \alpha} \quad \cot \alpha=\frac{\cos \alpha}{\sin \alpha}
$$

- range $=(-\infty, \infty)$
- domain of $\tan =\{x \mid \cos x \neq 0\}=\mathbb{R} \backslash\{\pi / 2+z \pi \mid z \in \mathbb{Z}\}$
- domain of cot $=\{x \mid \sin x \neq 0\}=\mathbb{R} \backslash\{z \pi \mid z \in \mathbb{Z}\}$

Exponential Functions

An exponential function is a function of the form

$$
f(x)=a^{x}
$$

where the base a is positive real number $(a>0)$.

$f(x)=2^{x}$

$f(x)=0.5^{x}$

These functions are called exponential since the variable x is in the exponent. Do not confuse them with power functions x^{a} !

Exponential Functions

How is a^{x} defined for $x \in \mathbb{R}$?

For $x=0$ we have $a^{0}=1$.
For positive integers $x=n \in \mathbb{N}$ we have

$$
a^{n}=\underbrace{a \cdot a \cdot \cdots \cdot a}_{n \text {-times }}
$$

For negative integers $x=-n$ we have

$$
a^{-n}=\frac{1}{a^{n}}
$$

For rational numbers $x=\frac{p}{q}$ with p, q integers we have

$$
a^{x}=a^{\frac{p}{q}}=\sqrt[q]{a^{p}}=(\sqrt[q]{a})^{p}
$$

$$
4^{\frac{3}{2}}=(\sqrt[2]{4})^{3}=2^{3}=8
$$

Exponential Functions: Irrational Numbers

But what about irrational numbers? What is $2^{\sqrt{3}}$ or 5^{π} ?

Roughly, one can imagine the situation like in this figure:

We have have defined the function for all rational points, and now want to close the gaps.

Clearly, the result should be an increasing function...

Exponential Functions: Irrational Numbers

But what about irrational numbers? What is $2^{\sqrt{3}}$ or 5^{π} ?
By increasingness we know:

$$
\begin{array}{rlr}
1.73<\sqrt{3}<1.74 & \Longrightarrow & 2^{1.73}<2^{\sqrt{3}}<2^{1.74} \\
1.732<\sqrt{3}<1.733 & \Longrightarrow & 2^{1.732}<2^{\sqrt{3}}<2^{1.733} \\
1.7320<\sqrt{3}<1.7321 & \Longrightarrow & 2^{1.7320}<2^{\sqrt{3}}<2^{1.7321} \\
1.73205<\sqrt{3}<1.73206 & \Longrightarrow & 2^{1.73205}<2^{\sqrt{3}}<2^{1.73206}
\end{array}
$$

There is exactly one number that fulfills all conditions on the right.
E.g., $2^{1.73205}<2^{\sqrt{3}}<2^{1.73206}$ determines the first 6 digits:

$$
2^{\sqrt{3}} \approx 3.321997
$$

Exponential Functions: Examples

Properties:

- All exponential functions pass through $(0,1)\left(\right.$ since $\left.a^{0}=1\right)$
- Larger base a yields more rapid growth for $x>0$.

Exponential Functions: Three Types

$$
f(x)=a^{x} \text { with } 0<a<1
$$

$$
f(x)=1^{x}
$$

$f(x)=a^{x}$ with $a>1$

- constant for $a=1$
- increasing for $a>1$
- decreasing for $0<a<1$
- domain $=(-\infty, \infty)$
- range $=(0, \infty)$ if $a \neq 1$

Laws of Exponents

Laws of Exponents

If a and b are positive real numbers, then:

1. $a^{x+y}=a^{x} \cdot a^{y}$
2. $a^{x-y}=\frac{a^{x}}{a^{y}}$
3. $\left(a^{x}\right)^{y}=a^{x y}$
4. $(a b)^{x}=a^{x} b^{x}$
5. $a^{3+4}=a \cdot a \cdot a \cdot a \cdot a \cdot a \cdot a=(a \cdot a \cdot a) \cdot(a \cdot a \cdot a \cdot a)=a^{3} \cdot a^{4}$
6. $a^{5-2}=a \cdot a \cdot a=\frac{(a \cdot a \cdot a) \cdot(a \cdot a)}{a \cdot a}=\frac{a^{5}}{a^{2}}$
7. $\left(a^{2}\right)^{3}=(a \cdot a)^{3}=(a \cdot a) \cdot(a \cdot a) \cdot(a \cdot a)=a^{6}=a^{2 \cdot 3}$
8. $(a b)^{3}=(a b) \cdot(a b) \cdot(a b)=(a \cdot a \cdot a) \cdot(b \cdot b \cdot b)=a^{3} b^{3}$

Exponential Functions vs. Power Functions

Which functions grows quicker when x is large:

$$
f(x)=x^{2} \quad g(x)=2^{x}
$$

For large x, the function 2^{x} grows much much faster than x^{2}.

Exponential Functions vs. Power Functions

Which functions grows quicker when x is large:

$$
f(x)=10 \cdot x^{5} \quad g(x)=1.1^{x}
$$

Exponential Functions vs. Power Functions

Which functions grows quicker when x is large:

$$
f(x)=10 \cdot x^{5} \quad g(x)=1.1^{x}
$$

For any $1<a$, the exponential function $f(x)=a^{x}$ grows for large x much faster than any polynomial.

Exponential Functions: Applications

We consider a population of bacteria:

- suppose the population doubles every hour
- we write $p(t)$ for the population after t hours
- initial population is $p(0)=1000$

We have:

$$
\begin{aligned}
& p(1)=2 \cdot p(0)=2 \cdot 1000 \\
& p(2)=2 \cdot p(1)=2^{2} \cdot 1000 \\
& p(3)=2 \cdot p(2)=2^{3} \cdot 1000
\end{aligned}
$$

Thus in general

$$
p(t)=1000 \cdot 2^{t}
$$

Under ideal conditions such rapid growth occurs in nature.

Exponential Functions: The Number e

The number

$$
e \approx 2.71828 \ldots
$$

is a very special base for exponential functions.

tangent has slope $1=e^{0}$

tangent has slope $e=e^{1}$

The slope of the function e^{x} at point $\left(x, e^{x}\right)$ is e^{x}.

One-To-One Functions

A one-to-one function is a function that never takes the same value twice, that is:

$$
f(x) \neq f(y) \quad \text { whenever } x \neq y
$$

Which of these function is one-to-one? The function g.

One-To-One Functions

How can we see from a graph if the function is one-to-one?

not one-to-one

one-to-one

Horizontal Line Test

A function is one-to-one if and only if no horizontal line intersects its graph more than once.

One-To-One Functions: Examples

Which of the following functions is one-to-one?

- $x^{3} \quad$? Yes
- x^{2} ? No
$-4^{x} \quad ? \quad$ Yes
$-x-x^{3} \quad ?$ No
$-x+4^{x} \quad ?$ Yes
$-x-x^{3} \quad ?$ Yes

Inverse Functions

A function g is the inverse of a function f if

$$
g(f(x))=x \text { for all } x \text { in the domain of } f
$$

(and the domain of g is the range of f).

A function f has an inverse if and only if f is one-to-one.

Inverse Functions

The inverse of a one-to-one function can be defined as follows.
Let f be a one-to-one function with domain A and range B.
Then its inverse function f^{-1} is defined by:

$$
f^{-1}(y)=x \quad \Longleftrightarrow \quad f(x)=y
$$

and has domain B and range A.

The inverse function of $f(x)=x^{3}$ is $f^{-1}(y)=y^{\frac{1}{3}}$:

$$
f^{-1}(f(x))=f^{-1}\left(x^{3}\right)=\left(x^{3}\right)^{\frac{1}{3}}=x
$$

We have the following cancellation equations:

$$
\begin{array}{ll}
f^{-1}(f(x))=x & \text { for all } x \in A \\
f\left(f^{-1}(y)\right)=y & \text { for all } y \in B
\end{array}
$$

Inverse Functions

To find the inverse function of f :

- solve the equation $y=f(x)$ for x in terms of y

Find the inverse function of $f(x)=x^{3}+2$.

$$
\begin{aligned}
& y=x^{3}+2 \\
\Longrightarrow & x^{3}=y-2 \\
\Longrightarrow & x=\sqrt[3]{y-2}
\end{aligned}
$$

Therefore the inverse function of f is $f^{-1}(y)=\sqrt[3]{y-2}$

Inverse Functions: Graphs

We have $\quad f(x)=y \Longleftrightarrow f^{-1}(y)=x \quad$ and hence point (x, y) in the graph of f \Longleftrightarrow point (y, x) in the graph of f^{-1}

reflected about the line $y=x$

Logarithmic Functions

The logarithmic functions

$$
f(x)=\log _{a} x
$$

where $a>0$ and $a \neq 1$.

The function $\log _{a} x$ is the inverse of the exponential function a^{x} :

$$
\log _{a} y=x \quad \Longleftrightarrow \quad a^{x}=y
$$

The logarithm $\log _{a} b$ gives us the exponent for a to get b.
For example: $\log _{10} 0.001=-3$ since $10^{-3}=0.001$.
The logarithmic functions $\log _{a} x$ have:

- domain $=(0, \infty)$
- range $=\mathbb{R}$

Logarithmic Functions

We have the following cancellation equations:

$$
\begin{aligned}
\log _{a}\left(a^{x}\right)=x & \text { for every } x \in \mathbb{R} \\
a^{\log _{a} x}=x & \text { for every } x>0
\end{aligned}
$$

$$
\log _{10}\left(10^{23}\right)=23
$$

$$
5^{\log _{5} 7}=7
$$

Logarithmic Functions

For $a>1, f(x)=a^{x}$ grows very fast.
As a consequence:
For $a>1, f(x)=\log _{a} x$ grows very slow.

Logarithmic Functions: Laws of Logarithm

If $x, y>0$, then

1. $\log _{a}(x y)=\log _{a}(x)+\log _{a}(y)$
2. $\log _{a}\left(\frac{x}{y}\right)=\log _{a}(x)-\log _{a}(y)$
3. $\log _{a}\left(x^{r}\right)=r \log _{a} x$

$$
\log _{2} 80-\log _{2} 5=\log _{2}\left(\frac{80}{5}\right)=\log _{2} 16=4
$$

We can proof the laws from the laws for exponents.

1. $\log _{a}(x y)=z \Longleftrightarrow a^{z}=x y$
and $\quad a^{\log _{a}(x)+\log _{a}(y)}=a^{\log _{a}(x)} \cdot a^{\log _{a}(y)}=x y$
2. $\log _{a}\left(x^{r}\right)=z \Longleftrightarrow a^{z}=x^{r}$
and $a^{r \log _{a}(x)}=\left(a^{\log _{a}(x)}\right)^{r}=x^{r}$

Logarithmic Functions: Base Conversion

If we want to compute $\log _{a} x$ but have only $\log _{b}$ then we can:

Base Conversion

$$
\log _{a} x=\frac{\log _{b} x}{\log _{b} a}
$$

Compute $\log _{4} 16$ using $\log _{2}$.

$$
\log _{4} 16=\frac{\log _{2} 16}{\log _{2} 4}=\frac{4}{2}=2
$$

Natural Logarithm

The natural logarithm In is a special logarithm with base e :

$$
\ln x=\log _{e} x
$$

Solve the equation $e^{5-3 x}=10$.

$$
\begin{aligned}
\ln \left(e^{5-3 x}\right) & =\ln 10 \quad \text { apply natural logarithm on both sides } \\
5-3 x & =\ln 10 \\
3 x & =5-\ln 10 \\
x & =\frac{5-\ln 10}{3}
\end{aligned}
$$

Express $\ln a+\frac{1}{2} \ln b$ in a single logarithm.

$$
\ln a+\frac{1}{2} \ln b=\ln a+\ln b^{\frac{1}{2}}=\ln a+\ln \sqrt{b}=\ln (a \sqrt{b})
$$

Inverse Trigonometric Functions

We are interested in inverse functions of:

Problem: these functions are not one-to-one!
Solution: we restrict their domain

- for sin we restrict the domain to $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
- for cos we restrict the domain to $[0, \pi]$

Inverse Trigonometric Functions

$\sin x$ restricted to $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

$\cos x$ restricted to $[0, \pi]$

From

$$
\begin{aligned}
& \sin ^{-1}(y)=x \Longleftrightarrow \\
& \cos ^{-1}(y)=x \Longleftrightarrow \\
& \sin (x)=y \text { and }-\frac{\pi}{2} \leq x \leq \frac{\pi}{2} \\
& \cos (x)=y \text { and } 0 \leq x \leq \pi
\end{aligned}
$$

The inverse sine function $\sin ^{-1}$ is also denoted by arcsin. The inverse cosine function $\sin ^{-1}$ is denoted by arccos.

Inverse Trigonometric

The domain of arcsin and arccos is $[-1,1]$.
The range of \arcsin is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ and of \arccos is $[0, \pi]$.

Inverse Trigonometric: Cancellation Equations

The cancellation equations are:

$$
\begin{array}{ll}
\arcsin (\sin x)=x & \text { for }-\frac{\pi}{2} \leq x \leq \frac{\pi}{2} \\
\sin (\arcsin x)=x & \text { for }-1 \leq x \leq 1
\end{array}
$$

$$
\arccos (\cos x)=x \quad \text { for } 0 \leq x \leq \pi
$$

$$
\cos (\arccos x)=x \quad \text { for }-1 \leq x \leq 1
$$

Inverse Trigonometric: Examples

α	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2 \pi}{3}$	$\frac{3 \pi}{4}$	$\frac{5 \pi}{6}$	π	$\frac{3 \pi}{2}$	2π
$\sin \alpha$	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0	-1	0
$\cos \alpha$	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{1}{\sqrt{2}}$	$-\frac{\sqrt{3}}{2}$	-1	0	1

$$
\begin{aligned}
& \sin ^{-1}(y)=x \Longleftrightarrow \\
& \cos ^{-1}(y)=x \Longleftrightarrow \\
& \sin (x)=y \text { and }-\frac{\pi}{2} \leq x \leq \frac{\pi}{2} \\
& \cos (x)=y \text { and } 0 \leq x \leq \pi
\end{aligned}
$$

Evaluate the following:

- $\sin ^{-1}\left(\frac{1}{2}\right)=\frac{\pi}{6}$
- $\tan \left(\arcsin \left(\frac{1}{3}\right)\right)=\frac{\sin \left(\arcsin \left(\frac{1}{3}\right)\right)}{\cos \left(\arcsin \left(\frac{1}{3}\right)\right)}=\frac{\frac{1}{3}}{\frac{2}{3} \sqrt{2}}=\frac{1}{3} \cdot \frac{3}{2} \cdot \frac{1}{\sqrt{2}}=\frac{1}{2 \sqrt{2}}$

Let $\alpha=\arcsin \left(\frac{1}{3}\right)$, then

Trigonometric Functions: Inverse Tangent

$\tan x$ restricted to $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$

$$
\tan ^{-1} y=x \quad \Longleftrightarrow \quad \tan x=y \text { and }-\frac{\pi}{2}<x<\frac{\pi}{2}
$$

The function arctan has domain $(-\infty, \infty)$ and range $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.

Trigonometric Functions: Inverse Cotangent

$\cot x$ restricted to $(0, \pi)$

$$
\cot ^{-1} y=x \Longleftrightarrow \cot x=y \text { and } 0<x<\pi
$$

The function $\cot ^{-1}$ has domain $(-\infty, \infty)$ and range $(0, \pi)$.

Exercises

Classify the following functions as one of the types that we have discussed:

1. $f(x)=5^{x}$ is an exponential function
2. $g(x)=x^{5} \quad$ is a power function, a polynomial of degree 5 , a rational function and an algebraic function.
3. $h(x)=\frac{1+x}{1-\sqrt{x}} \quad$ is an algebraic function.
4. $u(t)=1-t+5 t^{4} \quad$ is a polynomial of degree 4 , a rational function and an algebraic function.
5. $v(x)=x^{-3}$ is a power function, a rational function and an algebraic function.
6. $p(x)=x^{-\frac{1}{3}} \quad$ is a power function, and an algebraic function.
7. $z(x)=\frac{1+x}{3+x^{2}} \quad$ is a rational function, and algebraic function.

Exercises

Assume that a ball is dropped, and we have the following measurements:

- height at time $0 s$ is 490 m
- height at time $2 s$ is 472 m
- height at time $4 s$ is $414 m$

Find a quadratic function for the height of the ball after time t. When does the ball hit the ground?

We look for a function of the form:

$$
h(t)=a t^{2}+b t+c
$$

We know

$$
\begin{aligned}
& h(0)=c=490 \\
& h(2)=2^{2} a+2 b+490=472 \\
& h(4)=4^{2} a+4 b+490=414
\end{aligned}
$$

Exercises

We know $c=490$ and

$$
\begin{aligned}
& \text { (1) } h(2)=2^{2} a+2 b+490=472 \\
& \text { (2) } h(4)=4^{2} a+4 b+490=414
\end{aligned}
$$

We simplify

$$
\begin{aligned}
& \text { (1) } 4 a+2 b+18=0 \\
& \text { (2) } 16 a+4 b+76=0
\end{aligned}
$$

We solve by taking (2) - $2 \cdot(1)$:

$$
h(2)=8 a+40=0 \Longrightarrow 8 a=-40 \Longrightarrow a=-5
$$

We get b by plugging $a=-5$ in (1):

$$
4 \cdot(-5)+2 b+18=0 \Longrightarrow 2 b=2 \Longrightarrow b=1
$$

Thus $h(t)=-5 t^{2}+t+490$.

Exercises

Formula for the height:

$$
h(t)=-5 t^{2}+t+490
$$

When does the ball hit the ground? When the height is 0 :

$$
-5 t^{2}+t+490=0 \quad \Longrightarrow t^{2}-\frac{t}{5}-98=0
$$

Solving the quadratic formula:

$$
t=\frac{1}{10} \pm \sqrt{\left(\frac{1}{10}\right)^{2}+98}=\frac{1}{10} \pm \sqrt{\frac{1}{100}+\frac{9800}{100}}=\frac{1}{10} \pm \frac{\sqrt{9801}}{10}
$$

We know $100^{2}=10000$ and $(100-n)^{2}=10000-200 n+n^{2}$.
Thus $\sqrt{9801}=99$.

$$
t=\frac{1}{10} \pm \frac{99}{10} \Longrightarrow t=10 \text { or } t=-\frac{98}{10}
$$

Thus the ball hits the ground after 10 seconds.

