
Precise Definition of Limits

Recall the definition of limits:

Suppose f (x) is defined close to a (but not necessarily a itself).
We write

lim
x→a

f (x) = L

spoken: “the limit of f (x), as x approaches a, is L”

if we can make the values of f (x) arbitrarily close to L by taking
x to be sufficiently close to a but not equal to a.

The intuitive definition of limits is for some purposes too vague:
I What means ‘make f (x) arbitrarily close to L’ ?
I What means ‘taking x sufficiently close to a’ ?



Precise Definition of Limits: Example

f (x) =

{
2x − 1 for x 6= 3
6 for x = 3

Intuitively, when x is close to 3 but x 6= 3 then f (x) is close to 5.

How close to 3 does x need to be for f (x) to differ from 5 less
than 0.1?

I the distance of x to 3 is |x − 3|
I the distance of f (x) to 5 is |f (x) − 5|

To answer the question we need to find δ > 0 such that

|f (x) − 5| < 0.1 whenever 0 < |x − 3| < δ

For x 6= 3 we have

|f (x) − 5| = |(2x − 1) − 5| = |2x − 6| = 2|x − 3| < 0.1

Thus |f (x)−5| < 0.1 whenever 0 < |x −3| < 0.05 ; i.e. δ = 0.05.



Precise Definition of Limits: Example

f (x) =

{
2x − 1 for x 6= 3
6 for x = 3

We have derived

|f (x) − 5| < 0.1 whenever 0 < |x − 3| < 0.05

In words this means:
If x is within a distance of 0.05 from 3 (and x 6= 3)
then f (x) is within a distance of 0.1 from 5.



Precise Definition of Limits: Example

f (x) =

{
2x − 1 for x 6= 3
6 for x = 3

Similarly, we find

|f (x) − 5| < 0.1 whenever 0 < |x − 3| < 0.05
|f (x) − 5| < 0.01 whenever 0 < |x − 3| < 0.005

|f (x) − 5| < 0.001 whenever 0 < |x − 3| < 0.0005

The distances 0.1, 0.01, . . . are called error tolerance.

We have: δ(0.1) = 0.05, δ(0.01) = 0.005, δ(0.001) = 0.0005

Thus δ(ε) is a function of the error tolerance ε!

We need to define δ(ε) for arbitrary error tolerance ε > 0:

|f (x) − 5| < ε whenever 0 < |x − 3| < δ(ε)

We want |f (x) − 5| = 2|x − 3| < ε. We define δ(ε) = ε/2.
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Precise Definition of Limits: Example

f (x) =

{
2x − 1 for x 6= 3
6 for x = 3

We define δ(ε) = ε/2. Then the following holds

if 0 < |x − 3| < δ(ε) then |f (x) − 5| < ε

In words this means:
If x is within a distance of ε/2 from 3 (and x 6= 3)
then f (x) is within a distance of ε from 5.

We can make ε arbitrarily small (but greater 0),
and thereby make f (x) arbitrarily close 5.

This motivates the precise definition of limits. . .



Precise Definition of Limits

Let f be a function that is defined on some open interval that
contains a, except possibly on a itself.

lim
x→a

f (x) = L

if there exists a function δ : (0,∞)→ (0,∞) s.t. for every ε > 0:

if 0 < |a − x | < δ(ε) then |f (x) − L| < ε

In words: No matter what ε > 0 we choose,
if the distance of x to a is smaller than δ(ε) (and x 6= a)
then the distance of f (x) to L is smaller than ε.

We can make f arbitrarily close to L by taking ε arbitrarily small.

Then x is sufficiently close to a if the distance is < δ(ε).



Precise Definition of Limits

Let f be a function that is defined on some open interval that
contains a, except possibly on a itself.

lim
x→a

f (x) = L

if there exists a function δ : (0,∞)→ (0,∞) s.t. for every ε > 0:

if 0 < |a − x | < δ(ε) then |f (x) − L| < ε

The definition is equivalent to the one in the book:

lim
x→a

f (x) = L

if for every ε > 0 there exists a number δ > 0 such that

if 0 < |a − x | < δ then |f (x) − L| < ε



Precise Definition of Limits

lim
x→a

f (x) = L

if for every ε > 0 there exists a number δ > 0 such that

if 0 < |a − x | < δ then |f (x) − L| < ε

Geometric interpretation:

For any small interval (L − ε,L + ε) around L,
we can find an interval (a − δ,a + δ) around a
such that f maps all points in (a − δ,a + δ) into (L − ε,L + ε).

aa − δ a + δ LL − ε L + ε

x f (x)



Precise Definition of Limits

lim
x→a

f (x) = L

if for every ε > 0 there exists a number δ > 0 such that

if 0 < |a − x | < δ then |f (x) − L| < ε

Alternative geometric interpretation:

x

y

0

L − ε

L + ε

L

a
−
δ

a
+
δa

For every interval IL around L,

find interval Ia around a

such that

if we restrict the domain of f to
Ia, then the curve lies in IL.



Precise Definition of Limits - Example

Proof that

lim
x→3

(4x − 5) = 7

Let ε > 0 be arbitrary (the error tolerance).

We need to find δ such that

if 0 < |x − 3| < δ then |(4x − 5) − 7| < ε

We have

|(4x − 5) − 7| < ε ⇐⇒ |4x − 12| < ε⇐⇒ −ε < 4x − 12 < ε

⇐⇒ −
ε

4
< x − 3 <

ε

4⇐⇒ |x − 3| <
ε

4
Thus δ = ε

4 . If 0 < |x − 3| < ε
4 then |(4x − 5) − 7| < ε.



Precise Definition of Limits - Example

If the next exam will be insanely hard,
then many students will fail.

The words if and then are hugely important!

In exams many students write:
0 < |x − 3| < ε

4
|(4x − 5) − 7| < ε

which is wrong.

Correct is:
If 0 < |x − 3| < ε

4
then |(4x − 5) − 7| < ε



Precise Definition of Limits - Example

Find δ > 0 such that

if 0 < |x − 1| < δ then |(x2 − 5x + 6) − 2| < 0.2

Note that δ is a bound on the distance of x from 1.
Lets say x = 1 + δ. Then

(x2 − 5x + 6) − 2 = (1 + δ)2 − 5(1 + δ) + 4

= (1 + 2δ+ δ2) − (5 + 5δ) + 4

= δ2 − 3δ
Thus

|(x2 − 5x + 6) − 2| < 0.2 ⇐⇒ |δ2 − 3δ| < 0.2

Assume that |δ| < 1 (we can make it as small as we want), then:

|δ2 − 3δ| ≤ |δ2|+ |3δ| ≤ |δ|+ |3δ| ≤ 4|δ|

Thus: if 4|δ| < 0.2 then |(x2 − 5x + 6) − 2| < 0.2 .
Hence δ = 0.04 is a possible choice.



Precise Definition of Limits: Example

Let limx→a f (x) = Lf and limx→a g(x) = Lg . Prove the sum law:

lim
x→a

[f (x) + g(x)] = Lf + Lg

Let ε > 0 be arbitrary, we need to find δ such that

if 0 < |x − a| < δ then |(f (x) + g(x)) − (Lf + Lg)| < ε

Note that (f (x) + g(x)) − (Lf + Lg) = (f (x) − Lf ) + (g(x) − Lg).

We know that there exists δf such that:

if 0 < |x − a| < δf then |f (x) − Lf | < ε/2

and there exists δg such that:

if 0 < |x − a| < δg then |g(x) − Lg | < ε/2

We take δ = min(δf , δg). If 0 < |x − a| < δ then

|f (x) − Lf | < ε/2 and |g(x) − Lg | < ε/2

and hence |(f (x) − Lf ) + (g(x) − Lg)| < ε.



Precise Definition of One-Sided Limits

Left-limit

lim
x→a−

f (x) = L

if for every ε > 0 there is a number δ > 0 such that

if a − δ < x < a then |f (x) − L| < ε

Right-limit

lim
x→a+

f (x) = L

if for every ε > 0 there is a number δ > 0 such that

if a < x < a + δ then |f (x) − L| < ε



Precise Definition of One-Sided Limits - Example

Right-limit

lim
x→a+

f (x) = L

if for every ε > 0 there is a number δ > 0 such that

if a < x < a + δ then |f (x) − L| < ε

Proof that limx→0+

√
x = 0.

Let ε > 0. We look for δ > 0 such that

if 0 < x < 0 + δ then |
√

x − 0| < ε

We have (since 0 < x)

|
√

x − 0| = |
√

x | =
√

x < ε =⇒ x < ε2

Thus δ = ε2. If 0 < x < 0 + ε2 then |
√

x − 0| < ε.



Precise Definition of Infinite Limits

Infinite Limit

lim
x→a

f (x) =∞
if for every positive number M there is δ > 0 such that

if 0 < |a − x | < δ then f (x) > M

Negative Infinite Limit

lim
x→a

f (x) = −∞
if for every negative number M there is δ > 0 such that

if 0 < |a − x | < δ then f (x) < M



Precise Definition of Infinite Limits - Example

Infinite Limit

lim
x→a

f (x) =∞
if for every positive number M there is δ > 0 such that

if 0 < |a − x | < δ then f (x) > M

Proof that limx→0
1
x2 =∞.

Let M be a positive number. We look for δ such that

if 0 < |0 − x | < δ then
1
x2 > M

We have:

1
x2 > M ⇐⇒ 1 > M · x2 ⇐⇒ 1

M
> x2 ⇐⇒ √

1
M
> |x |

Thus δ =
√

1/M. If 0 < |0 − x | <
√

1/M then 1
x2 > M.


