Derivatives and the Shape of a Graph

If f/(x) > 0 on an interval, then f is increasing on that interval.

If f'(x) < 0 on an interval, then f is decreasing on that interval.

Where is f(x) = 3x* — 4x3 — 12x? + 5 increasing/decreasing?
f'(x) =12x3 —12x2 —24x = 12x(x — 2)(x + 1)

Interval | 12x | x—2 | x+1 | f'(x)

X< -1 - - - - decreasing on (—oo, —1)
-1<x<0 - - + + increasing on (—1,0)
O<x<2 + - + -

decreasing on (0,2)
2<X + + + + increasing on (2, co)




Derivatives and the Shape of a Graph

Recall Fermat’s Theorem

If f has a local extremum at ¢, then c is a critical number.

But not ever critical number is an extremum. We need a test!



Derivatives and the Shape of a Graph

First Derivative Test
Suppose that ¢ is a critical number of a continuous function f.

» If f' changes the sign from positive to negative,
then f has a local maximum at c.

» If f’ changes the sign from negative to positive,
then f has a local minimum at c.

» If f” does not change sign at c,
then f has no local extremum at c.
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Derivatives and the Shape of a Graph

What are the local extrema of f(x) = 3x* — 4x® — 12x2 + 5?
f'(x) =12x(x —2)(x + 1)

The critical numbers are: —1, 0 and 2.

We have already seen that:

Interval | 12x | x—2 | x+1 | f'(x)

X < -1 - - - - decreasing on (—oo, —1)
-1<x<0 - - + + increasing on (—1,0)
O<x<?2 + - + - decreasing on (0, 2)

2 <X + + + + increasing on (2, o)

We have:

» f(—1) =0is alocal minimum (' changes from — to +)
» f(0) =5is alocal maximum (' changes from + to —)
» f(2) = —27is a local minimum (' changes from — o +)



Derivatives and the Shape of a Graph

What are the local extrema of f(x) = 3x* — 4x3 — 12x° 4+ 57
f'(x) =12x(x —2)(x + 1)

The critical numbers are: —1, 0 and 2.
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We have:
» f(—1) =0is alocal minimum (' changes from — to +)
» f(0) =5is alocal maximum (' changes from + to —)
» f(2) = —27 is a local minimum (' changes from — to +)
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What are the local extrema of
f(x) =x+2sinx
We have

f'(x) =1+2cos x
fl(x)=0 cosx——1 = Xx= 2—orx—47[
B 2 3 3

As f’ is defined everywhere these are the only critical numbers.

Interval f'(x)
O<x<?ZF + increasing on (0, )
21 47'( : 27'[ 4n
F<X<F - Qecreaglng on (@ =)
T <x<2n + increasing on (%4, 2m)

As a consequence:
» f(%) = 2 + /3 is a local maximum (f' from + to —)

» f(%F) = ¥ — V/3is a local minimum (f’ from — to +)
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What are the local extrema of

f(x) =x+2sinx 0<x<2m ?
We have
f'(x) =1+2cos x
fl(x)=0 cosx——1 = x—z—ﬁorx—4iT
N 2 3 3
As f’ is defined everywhere these are the only critical numbers.
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As a consequence:

» f(%) = 2 + /3 is a local maximum (f’ from + to —)
» f(%F) = ¥ — V/3is a local minimum (f’ from — to +)



Derivatives and the Shape of a Graph

Let / be an interval. If the graph of f is called
» concave up on /if it it lies above all its tangents on /
» concave down on /if it it lies below all its tangents on /
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Imagine the graph as a street & a car driving from left to right:
» then concave upward = turning left (increasing slope)
» then concave downward = turning right (decreasing slope)
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On which interval is the curve concave up / concave down?
» on (a,b) concave downward
c) concave upward

c,d) concave downward

n (d,e) concave upward

e,f) concave upward

n (f,g) concave downward
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Derivatives and the Shape of a Graph

Concavity Test
If f”(x) > 0 for all x in /, then f is concave upward on /.

If f”(x) < 0 for all x in /, then f is concave downward on /.

A point P on a curve f(x) is called inflection point if f is
continuous at this point and the curve

» changes from concave upward to downward at P, or
» changes from concave downward to upward at P.

inflection-points -
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Where are inflection points of f(x) = x* — 4x3?
f'(x) = 4x3 — 12x2
f"(x) = 12x2 — 24x = 12x(x — 2)
Thus f”(x) =0 for x =0 and x = 2.

Interval f"(x)

x<0 + concave upward on (—oo, 0)
O<x<?2 - concave downward on (0, 2)

2<x + concave upward on (2, o)

Thus the inflection points are:

» (0,0) since the curve changes from concave up to down
» (2,—16) since the curve changes from concave down to up
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Second Derivative Test

Suppose f” is continuous near c.
» If f’(¢) =0and f”’(c) > 0, then f has a local minimum at c.
» If f/(c¢) =0and f”(c) < 0, then f has a local maximum at c.

Where does f(x) = x* — 4x2 have local extrema?
f'(x) = 4x°® — 12x% = 4x?(x — 3)
f7(x) = 12x% — 24x = 12x(x — 2)

Thus f’(x) = 0 for x = 0 and x = 3. Second Derivative Test:
f"(0) =0 f"(3) =36 >0

Thus f(3) = —27 is a local minimum as f’(3) = 0 and f”(3) > 0.
The Second Derivative Test gives no information for f”(0) = 0.

However, the First Derivative Test ... yields that /(0) = 0 is no
extremum since f'(x) < 0forx <0and 0 < x < 3.
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Curve Sketching

f(x) =x*—4x3 = x3(x — 4) f'(x) = 4x?(x — 3)
flx)=0 << x=0 or x=4
local minimum at (3, —27) and f/(0) =0
inflection points (0,0) and (2, —16)
decreasing on (—oo,0) and (0, 3), increasing on (3, o)
concave up on (—oo,0), down on (0,2), up on (2, co0)
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Summary: Finding Local Extrema
Find critical numbers c: f'(¢) = 0 or f’(c) does not exist.

First Derivative Test (f needs to be continuous at c):
» If f’ changes from + to — at c = local maximum
» If f’ changes from — to + at ¢ = local minimum
» If f' does not change sign at c = no local extremum

The Second Derivative Test:
1. f'(c) =0and f”’(c) >0 = local minimum
2. f'(c)=0and f”(c) <0 = local maximum

3. f'(c) or f”’(c) does not exist or f(¢) =0
— use the First Derivative Test



