
Data Types

Prof.Dr. Bahadır AKTUĞ

BME362 Introduction to Python

*Compiled from sources given in the references.



Prof. Dr. Bahadır AKTUĞ – BME362 Introduction to Python

Statically vs. Dynamically Typed Languages

• In statically typed languages, the variables have to be
defined before they are used (C/C++/Pascal etc.).

• In statically typed languages, a variable can only have
one type that cannot be changed during the program
execution.

• In a dynamically typed languages, the variables do not
have to be defined before they are assigned.

• In a dynamically typed language, the variables can
change their type during the runtime.

• For instance, while variable is an integer at the
beginning of a program and then it can be string at the
end.

• Python is a dynamicaly typed programming language.



Prof. Dr. Bahadır AKTUĞ – BME362 Introduction to Python

Strongly vs. Weakly Typed Languages

• In strongly typed languages, the operators take the
type of each operand into account and a check called
"type safety" is applied (C/C++/Pascal etc.).
• a = "Python"
• a=1457
• a = input()
• print(int(a))

• In a strongly typed language, you cannot add a number
to a string or vice versa.

• In a weakly typed language, the usage of the different
data types are flexible (Perl, Javascript).

• Python is a strongly typed programming language.



Prof. Dr. Bahadır AKTUĞ – BME362 Introduction to Python

Python Variable Names
• The naming convention with Python 3 has been made

quite flexible.
• The variable naming restrictions in Python 3 can be

summarized as below:
• The first character of a variable name must be

either a letter (lowercase or uppercase) or "_"
• The letter could be Unicode
• Any letter or number can follow after the first

character.



Prof. Dr. Bahadır AKTUĞ – BME362 Introduction to Python

Python Variable Names

• Python is a "case sensitive" language. This also
applies to variable as well as commands, functions
etc.

• The variable names cannot be chosen from the
reserved word list below (they are python
commands!)
• and, as, assert, break, class, continue, def, del,

elif, else, except, False, finally, for, from,
global, if, import, in, is, lambda, None,
nonlocal, not, or, pass, raise, return, True, try,
while, with, yield



Prof. Dr. Bahadır AKTUĞ – BME362 Introduction to Python

Numbers in Python

Integers

 Decimals (numbers on base 10)

 Octals (numbers in base 8): (they must have "0" and "o")

>>> a = 0o20

>>> print(a)

>>> 16

 Hexadecimals (numbers on base 16): (they must have "0" and "x/X")

>>> a = 0x10

>>> print(a)

>>> 16

 Binaries (numbers on base 2): (they must have "0" and "b/B")

 a = 0b110

>>> print(a)

>>> 6



Prof. Dr. Bahadır AKTUĞ – BME362 Introduction to Python

Conversion to a different base

 Decimal numbers can be converted to other bases:

 From decimal to octal (base 8):

>>> a = 16

>>> print(oct(a))

>>> '0x20' (note that it is converted as a string)

 From decimal to base 16:

 >>> a = 16

>>> print(hex(a))

>>> '0x10' (note that it is converted as a string)

 From decimal to base 2:

 >>> a = 16

>>> print(bin(a))

>>> '0b10000' (note that it is converted as a string)



Prof. Dr. Bahadır AKTUĞ – BME362 Introduction to Python

Numbers in Python

Integers

 There is no limit for integers:

>>> x = 787366098712738903245678234782358292837498729182728

>>> x * x * x 

48812397007063821598677016210573131553882758609194861799787112295022889

11239609019183086182863115232822393137082755897871230053171489685697978

75581092352

Floating Numbers

>>> a = 14.56

>>> a = 2.4583e-8

Complex Numbers

 Complex numbers can directly be used in Python.

>>> a = 3 – 5j

>>> b = 4 +7j

>>> a+b



Prof. Dr. Bahadır AKTUĞ – BME362 Introduction to Python

• There is a need for "string" type to express a sequence of

characters (letters, alphanumeric, even numbers, special

characters etc).

• ASCII coding allows defining 256 (28) different characters.

• However, there are far more letters and symbols than can be

accomodated by ASCII.Thus, Unicode standard was established.

• Unicode uses a 4-byte representation instead of ASCII's 1 byte

representation of characters.

• 4-byte representation of Unicode allows (28)4 > 4 million different

characters.

• Since Unicode's 4 byte representation (character mapping)

allocates 4-bytes even for characters where 1 byte is sufficient,

different Unicode Codings were developed (UF-8, UTF-16 ve

UTF-32)

String type



Prof. Dr. Bahadır AKTUĞ – BME362 Introduction to Python

• The string are defined as Unicode in Python without any coding.

• The string types can be defined with a single or double quote:

>>> a = 'EEE105'

>>> a = "EEE105"

• If the character sequence to be assigned to a string variable

already contains a single/double quote, a backslash (\) should be

used before it. If the string variable is defined with a single quote,

the quote inside could de double or vice versa.

>>> a = 'EEE105\'s content'

>>> a = "EEE105\"s content"

• There is also a triple quote in Python which is used to define a

multiline comment.

String type in Python



Prof. Dr. Bahadır AKTUĞ – BME362 Introduction to Python

• A single character of a string variable in Python can be directly

accesed with indexing.

>>> s = 'Hello World'

>>> s[0]

>>> 'H'

• The last characters can be accessed by using either of the

following methods:

>>> s[len(s)-1]

>>> 'd'

>>> s[-1]

>>> 'd'

String type in Python



Prof. Dr. Bahadır AKTUĞ – BME362 Introduction to Python

Concatenation:

• String concatenation is done by using operator "+":

>>> a = 'EEE105'

>>> b = " Computer Programming I"

>>> a+b

>>> 'EEE105 Computer Programming'

Repetition:

• A repetition of string is done using operator "*":

>>> a = 'AB'

>>> 3*a

>>> 'ABABAB'

String type in Python



Prof. Dr. Bahadır AKTUĞ – BME362 Introduction to Python

Indexing:

• Indexing in Python is done through operator "[]".

• Python allows for negative indexing.
>>> a = 'AB'

>>> a[1]

>>> 'B'

>>> a[0]

>>> 'A'

>>> a[-1]

>>> 'B'

>>> a[-6]

>>> 'A'

>>> a[-7]

>>> Hata mesajı

String type in Python

*After reaching the start 
of the variable it does
not go back!

*Indexing starts from 0!



Prof. Dr. Bahadır AKTUĞ – BME362 Introduction to Python

Slicing:

• Slicing in Python is done through operators "[:]"

• The start/end indices take place on the left and right side of ":"
>>> a = 'Ankara'

>>> a[3:5]

>>> 'ar'

• The start/end indices can be left blank. In this case, it means from
the start/to the end:

>>> a[:4]

>>> 'Anka'

>>> a[4:]

>>> 'ra'

String type in Python

*Dilimlemelerin 
indisleme gibi 0'dan 
başladığına
ve de ikinci dilim 
indisinin dilime dahil 
olmadığına dikkat 
ediniz.



Prof. Dr. Bahadır AKTUĞ – BME362 Introduction to Python

Size & Length:

• The find the length of a string, len() function is used.

• "len" function gives the number of characters.

• "space" counts.

• To access the last character in a string variable a, the indexing
a[len(a)-1] can be used.

>>> a = 'Ankara'

>>> len(a)

>>> 6

>>> a = 'Ankara İstanbul'

>>> len(a)

>>> 15

String type in Python



Prof. Dr. Bahadır AKTUĞ – BME362 Introduction to Python

• Mutable and Immutable variables are closely related to the
concepts of "call by value" and "call by reference" which are also
examined in the chapter about functions.

• In short, the string data type in Python is an immutable type. This
means that the letters of a string cannot be modified by usual
assignment.

>>> a = 'Ankara'

>>> a[0] = 'O'

error message …..

Mutable and Immutable Variables

*it tries to change the string to "Onkara"



Prof. Dr. Bahadır AKTUĞ – BME362 Introduction to Python

• Almost anything in Python is an object and is kept in at a specific
memory address. The content (value) of variables can be
compared with the operator "==". But to check whether they are
point at the same memory address, "is" operator is used:

>>> a = 'Ankara'; b = "Ankara"
>>> a == b
>>> True
>>> a is b
>>> True
>>> a = 'Med-Cezir'
>>> b = "Med-Cezir"
>>> a == b
>>> True
>>> a is b
>>> False

How is a string variable kept in the

memory?

*They are pointing at the same
object (the same memory
address). Their contents are the
same

*They are not pointing at the
same object (the same memory
address). Their contents are the
same



Prof. Dr. Bahadır AKTUĞ – BME362 Introduction to Python

Escape Sequences:

• String variables can
contain special
characters.

• They must have
operator "\" to
discriminate them
against the usual
characters.

String Variables in Python



Prof. Dr. Bahadır AKTUĞ – BME362 Introduction to Python

Variable Assignment

 The assignment operator is "=" as is in many
programming languages.

 Python is a dynamicaly typed language. The content of the
variable (its value) determines the data type. 

 The very same variable can have different data types
within the same code block.

 On the other hand, Python is a strongly typed language. 
Once the type is determined depending on the content, 
the operators should be compatible.

>>> a = "Gölbaşı"

>>> a = 27e12

>>> a = 1451 * 2321



Prof. Dr. Bahadır AKTUĞ – BME362 Introduction to Python

Variable Assignment
 When we take into account that all the variables in Python are actually

objects, caution should be exercised while assigning variables to one
another.

 When we assign a value to a variable, a chunk of memory is allocated and
an address of memory is assigned.

 When we assign variables to each other, only the memory address is 
assigned not their values. 

 Unless delibaretly done, such phenomenon could have disastrous results. 
When the content of the assigned variable is modified, it also effects the
first variable content.

 Python handles such a situation by assigning a new address during each
value assignment.

>>> a = [2,4,5]

>>> b = a

>>> b[0] = 1

>>> a

>>> [1,4,5]



Prof. Dr. Bahadır AKTUĞ – BME362 Introduction to Python

 References

1 Wentworth, P., Elkner, J., Downey, A.B., Meyers, C. (2014). How to Think Like a Computer Scientist: Learning with Python (3nd edition).

2 Pilgrim, M. (2014). Dive into Python 3 by. Free online version: DiveIntoPython3.org ISBN: 978-1430224150.

3 Summerfield, M. (2014) Programming in Python 3 2nd ed (PIP3) : - Addison Wesley ISBN: 0-321-68056-1.

4 Summerfield, M. (2014) Programming in Python 3 2nd ed (PIP3) : - Addison Wesley ISBN: 0-321-68056-1.

5 Jones E, Oliphant E, Peterson P, et al. SciPy: Open Source Scientific Tools for Python, 2001-, http://www.scipy.org/.

6 Millman, K.J., Aivazis, M. (2011). Python for Scientists and Engineers, Computing in Science & Engineering, 13, 9-12.

7 John D. Hunter (2007). Matplotlib: A 2D Graphics Environment, Computing in Science & Engineering, 9, 90-95.

8 Travis E. Oliphant (2007). Python for Scientific Computing, Computing in Science & Engineering, 9, 10-20.

9 Goodrich, M.T., Tamassia, R., Goldwasser, M.H. (2013). Data Structures and Algorithms in Python, Wiley.

10 http://www.diveintopython.net/

11 https://docs.python.org/3/tutorial/

12 http://www.python-course.eu

13 https://developers.google.com/edu/python/

14 http://learnpythonthehardway.org/book/


