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Position, Velocity, Acceleration
• Just as in 1d, in 2d, an object’s motion is

completely known if it’s position, velocity,
and acceleration are known.

• Position Vector  r
– In terms of unit vectors discussed last time, 

for an object at position (x,y) in x-y plane:

r  x i + y j
For an object moving: r depends on time t:

r = r(t) = x(t) i + y(t) j



• Suppose that an object moves from point A(ri) to 
point B(rf) in the x-y plane:

• The Displacement
Vector is:  Δr = rf - ri
If this happens in in a time 

Δt = tf - ti
• The Average Velocity is:

vavg  (Δr/Δt) 
Obviously, this in the same 
direction as the displacement.

It is independent of the path 
between A and B
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• As Δt gets smaller & smaller, clearly, A and B
get closer & closer together. Just as in 1d, we

define The Instantaneous Velocity
 Velocity at Any Instant of Time. 

 average velocity over an infinitesimally short time
• Mathematically, the instantaneous velocity is:

v  lim∆t  0 [(∆r)/(∆t)] ≡ (dr/dt)
lim ∆t  0  ratio (∆r)/(∆t) for smaller & smaller 
∆t. Mathematicians call this a derivative.

 The instantaneous velocity 
v ≡ time derivative of displacement r



• Instantaneous Velocity v ≡ (dr/dt). 
• The magnitude |v| of vector v ≡ speed. As motion 

progresses, the speed & direction of v can both 
change. For an object moving from A (vi) to B (vf) in 
the x-y plane: 
Velocity Change  Δv = vf - vi 

This happens in time  Δt = tf - ti

• Average Acceleration
aavg  (Δv/Δt) 

As both the speed & 
direction of v change, 
over an arbitrary path 



A turtle starts at the origin and moves with the speed of v0=10 cm/s in 
the direction of 25° to the horizontal. 

(a) Find the coordinates of a turtle 10 seconds later.  

(b) How far did the turtle walk in 10 seconds?

Example: Motion of a Turtle

cos25°=0.906, sin25°=0.423



Notice, you can solve the
equations independently for the
horizontal (x) and vertical (y)
components of motion and then
combine them!

yx vvv
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0

0 0 cos 25 9.06 cm/sxv v 
X components:

Y components:

Distance from the origin:

0 90.6 cmxx v t  

0 0 sin 25 4.23 cm/syv v 
0 42.3 cmyy v t  

cm 0.10022  yxd



Average acceleration

Instantaneous acceleration

The magnitude of the velocity (the speed) can change
The direction of the velocity can change, even though the
magnitude is constant
Both the magnitude and the direction can change

Average and Instantaneous 
Acceleration

dt

vd

t

v
aa

t
avg








 00t

limlim

jaiaj
t

v
i

t

v
a yavgxavg

yx
avg

ˆˆˆˆ
,, 












t

v
aavg 






jaiaj
dt

dv
i

dt

dv

dt

vd
a yx

yx ˆˆˆˆ 




 Position

 Average velocity

 Instantaneous velocity

 Acceleration

Summary in 2D motion
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2D Motion with Constant Acceleration
• It can be shown that:

Motion in the x-y plane can
be treated as 2 independent

motions in the x and y directions.

 So, motion in the x direction 
doesn’t affect the y motion and

motion in the y direction doesn’t 
affect the x motion.



Motion in two dimensions

tavv


 0

• Motions in each dimension are independent components
• Constant acceleration equations

• Constant acceleration equations hold in each dimension

– t = 0 beginning of the process;
– where ax and ay are constant;
– Initial velocity                             initial displacement                        ;
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Example 4.1: A particle starts from the origin at t=0 with an initial
velocity having an x component of 20 m/s and a y component of -15
m/s. The particle moves in the xy plane with an x component of
acceleration only, given by ax=4.0 m/s2. (a) Determine the
components of the velocity vector at any time and the total velocity
vector at any time.

(b) Calculate the velocity and speed of the particle at
t=5.0 s.



4.3 Projectile Motion

2-D problem and define a coordinate system: 
x- horizontal, y- vertical (up +)
Try to pick x0 = 0, y0 = 0 at t = 0

Horizontal motion + Vertical motion
Horizontal: ax = 0 , constant velocity motion
Vertical:     ay = -g = -9.8 m/s2, v0y = 0 

Equations:
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X and Y motions happen independently, so 
we can treat them separately

Try to pick x0 = 0, y0 = 0 at t = 0

Horizontal motion + Vertical motion
Horizontal: ax = 0 , constant velocity motion
Vertical:     ay = -g = -9.8 m/s2

x and y are connected by time t
y(x) is a parabola
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Maximum Height of a Projectile

Maximum Height



Horizontal Range of a Projectile



Example 4.3: The Long Jump
A long-jumper leaves the ground at an angle θi = 20° above the 
horizontal at a speed of vi = 11.0 m/s.

a) How far does he jump in the horizontal direction?
(Assume his motion is equivalent to that of a particle.)

b) What is the maximum height reached? 

Kinematic Equations
vxi = vicosθi,   vyi = visinθi ,vxf = vxi 

xf =  vxi t, vyf = vyi – gt
yf = vyi t - (½)gt2  

(vyf) 2 = (vyi)2 - 2gyf

(cos20°=0.94, sin20°=0.34)



The Long Jump: Solutions
A long-jumper leaves the ground at an angle θi = 20° above the 
horizontal at a speed of vi = 8.0 m/s.

a) How far does he jump in the horizontal direction?
(Assume his motion is equivalent to that of a particle.)

b) What is the maximum height reached? 

Kinematic Equations
vxi = vicosθi,   vyi = visinθi ,vxf = vxi 

xf =  vxi t, vyf = vyi – gt
yf = vyi t - (½)gt2  

(vyf) 2 = (vyi)2 - 2gyf

vxi = vi cos(θi) =  7.5 m/s
vyi = vi sin(θi) = 4.0 m/s

a) How far does he jump in the    
horizontal direction? Range =

R = (2vxivyi/g) = 2(7.5)(4)/(9.8)

R = 7.94 m

(cos20°=0.94, sin25°=0.34)



A long-jumper leaves the ground at an angle θi = 20° above the 
horizontal at a speed of vi = 11.0 m/s.

a) How far does he jump in the horizontal direction?
(Assume his motion is equivalent to that of a particle.)

b) What is the maximum height reached? 

Kinematic Equations
vxi = vicosθi,   vyi = visinθi ,vxf = vxi 

xf =  vxi t, vyf = vyi – gt
yf = vyi t - (½)gt2  

(vyf) 2 = (vyi)2 - 2gyf

vxi = vi cos(θi) =  7.5 m/s
vyi = vi sin(θi) = 4.0 m/s

R = 7.94 m
b) What is the maximum height?

h = [(vyi)2/(2g)]
h = 0.72 m

The Long Jump: Solutions

(cos20°=0.94, sin20°=0.34)

©Serways Physics 9th Ed. (Serway, 
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Example 4.4: Non-Symmetric Projectile Motion

Kinematic Equations
vxi = vicosθi,   vyi = visinθi

vxf = vxi ,    xf =  vxi t
vyf = vyi - gt

yf = vyi t - (½)gt2  

(vyf) 2 = (vyi)2 - 2gyf

A stone is thrown. xi = yi = 0
yf = -45.0 m,  vi = 20 m/s, θi = 30º

a) Time to hit the ground?
b) Speed just before it hits? 
c) Distance from the base of the 

building where it lands? 
(cos30°=0.87, sin30°=0.5)
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Example 4.4: Solution
A stone is thrown! xi = yi = 0

yf = -45.0 m,  vi = 20 m/s, θi = 30º
a) Time to hit the ground?
b) Speed just before it hits? 
c) Distance from the base of the 

building where it lands? 
First, calculate

vxi = vi cos(θi) = 17.3 m/s
vyi = vi sin(θi) = 10.0 m/s

a) Time to hit the ground?
(Time when yf = -45.0 m)

yf = -45m = vyi t - (½)gt2  

A general quadratic must be solved 
using the quadratic equation.
This gives:

t = 4.22 s

Kinematic Equations
vxi = vicosθi,   vyi = visinθi

vxf = vxi ,    xf =  vxi t
vyf = vyi - gt

yf = vyi t - (½)gt2  

(vyf) 2 = (vyi)2 - 2gyf
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Example 4.4: Solution
A stone is thrown! xi = yi = 0

yf = -45.0 m,  vi = 20 m/s, θi = 30º
a) Time to hit the ground?
b) Speed just before it hits? 
c) Distance from the base of the 

building where it lands? 
First, calculate

vxi = vi cos(θi) = 17.3 m/s
vyi = vi sin(θi) = 10.0 m/s

thit = 4.22 s
b) Velocity just before it hits?

vxf = vxi ,  vyf = vyi – gt so vxf = 17.3 m/s
vyf = 10 – (9.8)(4.22) = - 31.3 m/s

Speed (vf)2 = (vxf)2 + (vyf)2

vf = 35.8 m/s
Angle: tan(θf) = (vyf/vxf)  =  -(31.3/17.3)  = -1.8

θf = -60.9º

Kinematic Equations
vxi = vicosθi,   vyi = visinθi

vxf = vxi ,    xf =  vxi t
vyf = vyi - gt

yf = vyi t - (½)gt2  

(vyf) 2 = (vyi)2 - 2gyf
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Example 4.4: Solution
A stone is thrown! xi = yi = 0

yf = -45.0 m,  vi = 20 m/s, θi = 30º
a) Time to hit the ground?
b) Speed just before it hits? 
c) Distance from the base of the 

building where it lands? 
First, calculate

vxi = vi cos(θi) = 17.3 m/s
vyi = vi sin(θi) = 10.0 m/s

thit = 4.22 s
vf = 35.8 m/s, θf = -60.9º

c) Distance from the base of the
building where it lands? 
xf =  vxi thit = (17.3)(4.22) = 73.0 m

Kinematic Equations
vxi = vicosθi,   vyi = visinθi

vxf = vxi ,    xf =  vxi t
vyf = vyi - gt

yf = vyi t - (½)gt2  

(vyf) 2 = (vyi)2 - 2gyf
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Example: Driving Off a Cliff!!

vxf = vxi = ? vyf = -gt
xf = vxft, yf = - (½)gt2

Time to  Bottom:
t = √2y/(-g) = 3.19 s
vx0 = (x/t) = 28.2 m/s

A movie stunt driver on a motorcycle speeds horizontally off a 50.0-m-high 
cliff. How fast must the motorcycle leave the cliff top to land on level 
ground below, 90.0 m from the base of the cliff where the cameras are?
Kinematic Equations:  vxi = vicosθi,   vyi = visinθi ,vxf = vxi xf =  vxi t

vyf = vyi – gt,  yf = vyi t - (½)gt2, (vyf) 2 = (vyi)2 - 2gyf

©http://www.phys.ttu.edu/~cmyle
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Solutions: Driving Off a Cliff!!

vxf = vxi = ? vyf = -gt
xf = vxft, yf = - (½)gt2

Time to  Bottom:
t = √2y/(-g) = 3.19 s
vx0 = (x/t) = 28.2 m/s

A movie stunt driver on a motorcycle speeds horizontally off a 50.0-m-high 
cliff. How fast must the motorcycle leave the cliff top to land on level 
ground below, 90.0 m from the base of the cliff where the cameras are?
Kinematic Equations:  vxi = vicosθi,   vyi = visinθi ,vxf = vxi xf =  vxi t

vyf = vyi – gt,  yf = vyi t - (½)gt2, (vyf) 2 = (vyi)2 - 2gyf

vx = vxi = ?,   vyf = -gt
xf = vxit,     yf = - (½)gt2

Time to the bottom = 
time when y = - 50 m 

- (½)gt2 = - 50 m
t = 3.19 s

At that time xf = 90.0 m
So  vxi = (xf/t) = (90/3.19)

vxi =  28.2 m/s
©http://www.phys.ttu.edu/~cmyle
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