Chapter 4: Motion in Two Dimensions

PHY0101/PHY(PEN)101

Assoc. Prof. Dr. Fulya Bağcı

Outline

4.1 The Position, Velocity, and Acceleration Vectors **Outline**
4.1 The Position, Velocity, and
Acceleration Vectors
4.2 2D Motion with Constant Acceleration
4.3 Projectile Motion 4.3 Projectile Motion **Sutline**

4.1 The Position, Velocity, and

Acceleration Vectors

4.2 2D Motion with Constant Acceleration

4.3 Projectile Motion

4.4 Uniform Circular Motion

4.5 Tangential and Radial Acceleration 4.1 The Position, Velocity, and
Acceleration Vectors
4.2 2D Motion with Constant Acceleration
4.3 Projectile Motion
4.5 Tangential and Radial Acceleration
4.5 Tangential and Radial Acceleration
4.6 Relative Velocity a 1.1 The Tosmon, Telesary, and
Acceleration Vectors
4.2 2D Motion with Constant Acceleration
4.3 Projectile Motion
4.5 Tangential and Radial Acceleration
4.6 Relative Velocity and Relative Acceleration

Uniform Circular Motion

- **Motion of a mass in a circle at <u>constant speed</u>.**
• Constant speed $\boxed{v = |v| = \text{constant}}$
- Constant *speed* $|v| = |v|$ = constant
	- \Rightarrow The Magnitude (size) of the velocity vector v is constant. **BUT** the **DIRECTION** of ν changes continually!

**Transferred CONTEX A small object moving in a circle,
showing how the velocity changes.
Note that at each point, the velocity changes.
Note tha** circle at **constant speed**.

v| = constant

of the velocity vector **v** is

CCTION of *v* changes continually!

A small object moving in a circle,

showing how the velocity changes.

Note that at each point, the

instantane CITCIE at **CONSTANT Speed**.
 y = **constant**

of the velocity vector **v** is

CTION of **v** changes continually!

A small object moving in a circle,

showing how the velocity changes.

Note that at each point, the

instant $\frac{dy}{dx} = \text{constant}$

instants of the velocity vector v is

instants of v changes continually!

A small object moving in a circle,

showing how the velocity changes.

Note that at each point, the

instantaneous velocity is in of the velocity vector **v** is
 CTION of **v** changes continually!

A small object moving in a circle,

showing how the velocity changes.

Note that at each point, the

instantaneous velocity is in a direction

tangent to

$v \perp r$

©http://www.phys.ttu.edu/~cmyles/ Prof. Charles W. Myles

• For a mass moving in circle at **constant speed.**
Acceleration \equiv **Rate of Change of Velocity**

 $a = (\Delta v / \Delta t)$

Constant Speed \Rightarrow **The Magnitude** (size) of the velocity vector v is constant. $v = |v|$ = constant **BUT** the **DIRECTION** of v changes continually!

$\Rightarrow An\ object\ moving\ in\ a\ circle$ undergoes acceleration!

©http://www.phys.ttu.edu/~cmyles/

Prof. Charles W. Myles

Centripetal (Radial) Acceleration
Consider motion in a circle from **A** to point **B**.
The velocity **v** is tangent to the circle.
a = $\lim_{\Delta t \to 0} (\Delta v/\Delta t) = \lim_{\Delta t \to 0} [(v_2 - v_1)/(\Delta t)]$
 $\Delta t \to 0, \Delta v \to \bot v \& \Delta v$ is in the <u>radi</u> **ation**

o point **B**.

circle.

- v_1)/(Δt)]

dial direction **Centripetal (Radial) Acceleration**
Consider motion in a circle from **A** to point **B**.
The velocity **v** is tangent to the circle.
 $\mathbf{a} = \lim_{\Delta t \to 0} (\Delta v/\Delta t) = \lim_{\Delta t \to 0} [(\mathbf{v}_2 - \mathbf{v}_1)/(\Delta t)]$
As $\Delta t \to 0$, $\Delta v \to \bot \mathbf{v} \&$ Centripetal (Radial) Acceleration Consider motion in a circle from **A** to point **B**.
The velocity **v** is tangent to the circle. $[(v_2 - v_1)/(\Delta t)]$ \Rightarrow a \equiv a_c is <u>radial!</u> V_2 V_1 $\Delta\theta$ $$ \mathbf{v}_2 $\Delta \theta$ (b)

 $(\Delta v/v) = (\Delta \ell/r) \Rightarrow \Delta v = (v/r) \Delta \ell$ $(\Delta v/v) = (\Delta \ell/r) \Rightarrow \Delta v = (v/r) \Delta \ell$
• Note that the acceleration (*radial*) is
 $a_c = (\Delta v/\Delta t) = (v/r)(\Delta \ell/\Delta t)$ v/v) = ($\Delta l/r$) $\Rightarrow \Delta v$ = (v/r) Δl
at the acceleration (*radial*) is
 $a_c = (\Delta v/\Delta t) = (v/r)(\Delta l/\Delta t)$
i $\Delta t \rightarrow 0$, ($\Delta l/\Delta t$) $\rightarrow v$ and $\text{As } \Delta t \rightarrow 0$, $(\Delta \ell / \Delta t) \rightarrow v$ and $Magnitude: |a_c = (v^2/r)|$ Direction: Radially inward! "Centripetal" \equiv "Towards the Center" Centripetal Acceleration is acceleration towards the center.

• A typical figure for a particle moving in uniform circular motion, radius \mathbf{r} (speed $\mathbf{v} = \text{constant}$) is shown here: motion, radius \bf{r} (speed \bf{v} = constant) is shown here:

Velocity vector v is always **Tangent** to the circle!! $a = a_c$ Centripetal Acceleration Exploring in the unity

action, radius r (speed v = constant) is shown
 $\frac{a}{2}$ relocity vector v is always
 $\frac{a}{2}$ relocity to the circle!
 $\frac{a}{2} = \frac{a}{2}$

Centripetal Acceleration
 $\frac{a}{2}$ is Radially Inward
 always! $\Rightarrow a_c \perp v$ always!! **Magnitude:** $a_c = (v^2/r)$ eircular me

For uniform perpendicular to v.

> © Brooks/Cole Thomson 2016 College Physics

Period & Frequency

- **Period & Frequency**
• Consider again a particle moving in uniform
circular motion of radius **r** (speed **v** = constant) circular motion of radius \bf{r} (speed \bf{v} = constant) • Consider again a particle moving in uniform

• Consider again a particle moving in uniform

• Description in terms of *period* $T \& frequency f$:

• Period $T =$ The time for one revolution (time to
-
- Consider again a particle moving in uniform

 circular motion of radius **r** (speed **v** = constant)

 Description in terms of **period T** & **frequency f**:

 Period **T** = The time for one revolution (time to

go around go around once), usually in seconds. • Consider again a particle moving in uniform
circular motion of radius **r** (speed **v** = constant)
• Description in terms of **period T** & **frequency f:**
• Period **T** = The time for one revolution (time to
go around once),
-

 \Rightarrow T = (1/f)

revolution: devir

- Particle moving in uniform circular motion,
radius \mathbf{r} (speed \mathbf{v} = constant) radius $\mathbf r$ (speed $\mathbf v$ = constant) • Particle moving in uniform

radius **r** (speed **v** = consta

• Circumference

= distance around= $2\pi r$
-

$$
= distance around = 2\pi r
$$

- \Rightarrow Speed: $v = (2\pi r/T) = 2\pi r f$
- \Rightarrow Centripetal acceleration:

$$
a_c = (v^2/r) = (4\pi^2 r/T^2)
$$

 r/T^2 **)** For uniform perpendisyoks/Cole Thomson 2016 College Physics

Example: Centripetal Acceleration of the Earth

Problem 1: Calculate the centripetal acceleration of the Earth as it moves in its orbit around the Sun. NOTE: The radius of the Earth's orbit (from a table) is **betal Acceleration of the Earth**
te the centripetal acceleration of t
is it moves in its orbit around the S
of the Earth's orbit (from a table)
 $r = 1.496 \times 10^{11}$ m

$$
a_c = \frac{v^2}{r} = \frac{\left(\frac{2\pi r}{T}\right)^2}{r} = \frac{4\pi^2 r}{T^2}
$$

$$
= \frac{4\pi^2 (1.496 \times 10^{11} \text{ m})}{(1 \text{ yr})^2} \left(\frac{1 \text{ yr}}{3.156 \times 10^7 \text{ s}}\right)^2
$$

$$
= \frac{5.93 \times 10^{-3} \text{ m/s}^2}{(1.496 \times 10^{-3} \text{ m/s}^2)}
$$

Tangential & Radial Acceleration

Tangential & Radial Acceleration
• Consider an object moving in a curved path. If the speed $|v|$ of object is changing, there is an acceleration in the direction of motion. **Tangential & Radial Acceleration**
Consider an object moving in a curved path. If the speed
 $|v|$ of object is changing, there is an acceleration in the
direction of motion.
 \equiv Tangential Acceleration **Tangential & Radial Accele**
Consider an object moving in a curved path.
 $|v|$ of object is changing, there is an acceler:
direction of motion.
 \equiv <u>Tangential Acceleration</u> **Example 18 Acceleration**

a coving in a curved path. If the speed

ing, there is an acceleration in the

<u>cential Acceleration</u>
 $a_t \equiv |dv/dt|$ • Consider an object moving in a curved path. If the speed
 $|v|$ of object is changing, there is an acceleration in the

direction of motion.
 $\equiv \frac{\text{Tangential Acceleration}}{a_t}$

• But, there is also always a radial (or centripetal)

ac Consider an object moving in a curved path. If the speed
 $|v|$ of object is changing, **there is an acceleration in the**

direction of motion.
 $\equiv \frac{\text{Tangential Acceleration}}{a_t}$

But, there is also always a radial (or centripetal)

acce

 \equiv Tangential Acceleration

biject is changing, there is an acceleration in the

on of motion.
 $\equiv \frac{Tangential Acceleration}{A_1}$

here is also always a radial (or centripetal)

ration perpendicular to the direction of motion.
 $\equiv \frac{Radial (Centripetal) Acceleration}{a_r} = |a_c| \equiv (v^2/r)$ $a_r = |a_c| \equiv (v^2/r)$

Total Acceleration

- \Rightarrow In this case there are always two \perp vector components of the acceleration: $\frac{\text{Total Acceleration}}{\text{components of the acceleration}}$

⇒ In this case there are always two \perp <u>vector</u>

• **Tangential:** $a_t = |dv/dt| \& \text{Radial: } a_r = (v^2/r)$

• **Total Acceleration** is the *vector sum*: $a = a_R + a_t$
- Tangential: $a_t = |dv/dt| \& \text{Radial: } a_r = (v^2/r)$
- Total Acceleration is the *vector sum*: $a = a_R + a_t$

4.5 Tangential & Radial acceleration Example: Over the Rise

Problem: A car undergoes a constant acceleration of $a = 0.3$ m/s² parallel to the roadway. It passes over a rise in the roadway such that the top of the rise is **4.5 Tangential & Radial acceleration**
Example: Over the Rise
Problem: A car undergoes a constant acceleration of $a = 0.3$ m/s² parallel to
the roadway. It passes over a rise in the roadway such that the top of the rise, its velocity vector **v** is horizontal & has a magnitude of $v = 6.0$ m/s. What is the direction of the total acceleration vector a for the car at this instant?

© Brooks/Cole Thomson 2016 College Physics

Solution:

$$
a_r = -\frac{v^2}{r} = -\frac{(6.00 \text{ m/s})^2}{500 \text{ m}} = -0.0720 \text{ m/s}^2
$$

$$
a = \sqrt{a_r^2 + a_t^2} = \sqrt{(-0.0720)^2 + (0.300)^2} \text{ m/s}^2
$$

= 0.309 m/s²

$$
\phi = \tan^{-1} \frac{a_r}{a_l} = \tan^{-1} \left(\frac{-0.0720 \text{ m/s}^2}{0.300 \text{ m/s}^2} \right) = -13.5^{\circ}
$$

4.6 Relative Velocity and Relative Acceleration

Assoc.Prof.Dr. Fulya Bağcı

Velocity of A relative to B:

$$
V_{AB} = V_A - V_B
$$

$$
\mathbf{v}_{AB}
$$
: v of A with respect to B

\mathbf{v}_{B} : v of B with respect to a reference frame (ex.: the ground)

 \mathbf{v}_A : v of A with respect to a reference frame (ex.: the ground)

Figure 4.23 A particle located at @ is described by two observers, one in the fixed frame of reference S, and the other in the frame S', which moves to the right with a constant velocity v_o. The vector r is the particle's position vector relative to S, and r' is its position vector relative to 3'.

Galilean Transformation Equations

The vectors r and r' are related to each other through the expression:

$$
\mathbf{r}' = \mathbf{r} - \mathbf{v}_0 t
$$

If we differentiate with respect to time and note that V_0 is constant, we obtain:

$$
\mathbf{v}' = \mathbf{v} - \mathbf{v}_0
$$

where V' and V is the velocity of the particle observed in the S' and S' frame, respectively.

Observers in two frames measure the same acceleration when V_0 is constant.

Example: A boad crossing a river

Example: A boad crossing a river
A boat heading due north crosses a wide river with a speed of
10.0 km/h relative to the water. The water in the river has a
uniform speed of 5.00 km/h due east relative to the Earth Example: A boad crossing a river
A boat heading due north crosses a wide river with a speed of
10.0 km/h relative to the water. The water in the river has a
uniform speed of 5.00 km/h due east relative to the Earth. Example: A boad crossing a river
A boat heading due north crosses a wide river with a speed of
10.0 km/h relative to the water. The water in the river has a
uniform speed of 5.00 km/h due east relative to the Earth.
Determ Example: A boad crossing a river
A boat heading due north crosses a wide river with a speed of
10.0 km/h relative to the water. The water in the river has a
uniform speed of 5.00 km/h due east relative to the Earth.
Determ Example: A boad crossing a river
A boat heading due north crosses a wide river with a speed of
10.0 km/h relative to the water. The water in the river has a
uniform speed of 5.00 km/h due east relative to the Earth.
Determ A boat heading due north crosses a wide river with 10.0 km/h relative to the water. The water in the river uniform speed of 5.00 km/h due east relative to the Determine the velocity of the boat relative to an obstandin

Solution:

$$
\mathbf{v}_{bE} = \mathbf{v}_{br} + \mathbf{v}_{rE}
$$

$$
v_{bE} = \sqrt{v_{br}^2 + v_{rE}^2} = \sqrt{(10.0)^2 + (5.00)^2} \text{ km/h}
$$

$$
= 11.2 \text{ km/h}
$$

Take me back to my boat on the river…

$$
\theta = \tan^{-1}\!\left(\frac{v_{\rm rE}}{v_{\rm br}}\right) = \tan^{-1}\!\left(\frac{5.00}{10.0}\right) = 26.6^{\circ}
$$

-
-
-
- Position, Velocity, Acceleration in 2Ds
• Projectile motion
• Uniform circular motion
• Tangential and radial (centripetal) acceleration
• Relative velocity and relative acceleration
Assoc.Prof.Dr. Fulya Bağcı
-

Assoc.Prof.Dr. Fulya Bağcı