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Mechanics: “Classical” Mechanics
“Classical” Physics:

“Classical” = ~ Before the 20" Century
The foundation of pure and applied
macroscopic physics and engineering!

— Newton’s Laws + Boltzmann’s Statistical Mechanics

(and Thermodynamics): & Describe most of macroscopic
world!

— However, at high speeds (v ~ ¢) we need

Special Relativity: (Early 20" Century: 1905)

— Also, for small sizes (atomic and smaller) we need
Quantum Mechanics: (1900 through ~ 1930)

(14 e 99 ° . .
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“Classical” Mechanics

The physics in this course 1s limited to macroscopic objects
moving at speeds v much, much smaller than the speed of light

¢ =3 x 10% m/s. As long as v << ¢, our discussion will be valid.
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Mechanics
* The science of HOW objects move
(behave) under given forces.

e (Usually) Does not deal with the
sources of forces.

* Answers the question:

“Given the forces, how
do objects move”?



Theory
* A Quantitative (mathematical)description
of experimental observations.

* Not just WHAT is observed but WHY it is
observed as it is and HOW it works the way it does.

Tests of Theories:
—Experimental observations:

More experiments, more observation.

—Predictions:

Made before observations & experiments.



Chapter 1 Measurement

1.1 Standards of Length, Mass, and Time
1.2 Matter and Model Building
1.3 Density and Atomic Mass

1.4 Dimensional Analysis

1.5 Conversion of Units

1.6 Estimates and Order-of-Magnitude
Calculations

1.7 Significant Figures



1.1 Standards of Length, Mass,
and Time

* In mechanics, the three basic quantities are length,
mass and time. All other quantities in mechanics
can be expressed 1n terms of these three.

* If we are to report the results of a measurement to
someone who wishes to reproduce this
measurement, a standard must be defined.

 In 1960, an international committee established a
set of standards for the fundamental quantities of
science. It 1s called the SI (Systeme International)



Fundamental Quantities and Their

Units
| Quantty [ SiUnt | Abbreviation |
Length meter m
Mass Kilogram kg
Time second S
Temperature Kelvin K
Electric Current ampere A
Luminous candela cd
Intensity
Amount of mole mol
Substance




Length

» Length 1s the distance between two points 1n
space

e Units
— SI — meter, m

 Defined in terms of a meter — the distance

traveled by light in a vacuum during during
a time of 1/299 792 458 second



10:00 s 0:01 s

Light
source Ligh‘[ travels exactly
299.792.458 m in 1 s.

>

In October 1983, the meter (m) was redefined as
the distance traveled by light in vacuum during a
time of 1/299 792 458 second.



Approximate Values of Some Measured Lengths

Length (m)
Distance from the Earth to the most remote known quasar 1.4 % 10-°
Distance from the Earth to the most remote normal galaxies 9 x 10%°
Distance from the Earth to the nearest large galaxy 9 % 10%
(M 51, the Andromeda galaxy)
Distance from the Sun to the nearest star ( Proxima Centauri) 4 x 1010
One hightyear 9.46 % 1017
Mean orbit radius of the Earth about the Sun 1.50 x 104
Mean distance from the Earth to the Moon 3.84 X 108
Distance from the equator to the North Pole 1.00 % 107
Mean radius of the Earth 6.37 x 10°
Typical altitude (above the surface) of a 2 X 10°

satellite orbiting the Earth

Length of a football field 9.1 X 10
Length of a housefly 5% 1073
Size of smallest dust particles ~ 10t
5ize of cells of most living organisms ~10-"
Diameter of a hyvdrogen atom — 102
Diameter of an atomic nucleus ~ 1014

Diameter of a proton ~ 1018



Virus: 107" m Height of
Everest: 10* m



Mass

* Units
— SI — kilogram, kg

* Previously defined in terms of a kilogram,
based on the mass of a specific platinum—
iriddium  alloy cylinder kept at the
International Bureau of Weights and
Measures at Sevres, France.

 In 20 Mayis 2019 the definition has
changed.



Standard Kilogram at Seévres, France

2 © Brooks/Cole Thomson
2006 College Physics
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 The problem with this definition was its
imprecision. It was not based on
unchanging properties of the universe.

 Light speed, on the other hand, 1s
unchanging. By 1983, physicists had gotten
really good at measuring the speed of light.

* Every unit in the Planck constant 1s defined
by an unchanging force of nature. Planck's
constant is equal to 6.626069934 x 1034
kg.m?/s and uncertainty was just 13 parts
per billion.



 The new definition relates the kilogram to
the equivalent mass of the energy of a
photon given its frequency, via the Planck
constant.

* kg 1s defined by taking the fixed numerical
value of the Planck constant h to be
6.62607015x1073* when expressed in the
unit J-s, which is equal to kg-m?-s~!, where
the metre and the second are defined in
terms of ¢ and Av..
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Time

e Units
— seconds, S

e Defined 1in terms of the oscillation of
radiation from a cesium atom

* In 1967 the second (s) 1s defined as 9 192
631 770 times the period of vibration of
radiation from the cesium atom.



Standard Second

A cesium fountain atomic| |
clock. This clock will

neither gain nor
lose a second in
20 million years!




Similar Information on Typical Times

Approximate Values of Some
Time Intervals
Time Interval (s)

Age of the Universe 4 X 10"
Age of the Earth 1.3 X 10"
Average age of a college student 6.3 X 108
One year 3.2 X 107
One day 8.6 X 10*
One class period 3.0 X 10°
Time interval between normal

heartbeats 8 X 101
Period of audible sound waves ~ 1073
Period of typical radio waves ~ 107°
Period of vibration of an atom in a solid ~ 10713
Period of visible light waves ~= JO—1°
Duration of a nuclear collision ~ 10722
Time interval for light to cross a proton ~ 10~

© Serway Physics



o Still used 1n the US, but we will use SI

Length foot

Mass slug

Time second




Models of Matter

* Some Greeks thought matter
1s made of atoms

— In Greek, atomos means “not
sliceable.”

— JJ Thomson (1897) found
electrons and showed
atoms had structure

e Rutherford (1911) central
nucleus surrounded by
electrons

©http://www.phys.ttu.edu/~cmyles
/Prof. Charles W. Myles
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Models of Matter, cont

* Nucleus has structure, containing protons
and neutrons

— Number of protons gives atomic number

— Number of protons and neutrons gives mass
number

* Protons and neutrons are made up of quarks



1.3 Density and Mass

* Density: mass per unit volume

For example, aluminum has a density of 2.70 g/cm?3,
and lead has a density of 11.3 g/cm3. Therefore, a
piece of aluminum of volume 10.0 cm3has a mass of
27.0 g, whereas an equivalent volume of lead has a
mass of 113 g.



An atomic mass unit 1s a physical constant equal to one-twelfth of
the mass of an unbound atom of carbon-12.

1 atomic mass unit (u): 1 u=1.660 538 7 x 10?7 kg.

Example How many Atoms in the Cube? A solid cube of aluminum (density
2.70 g/cm?) has a volume of 0.200 cm?. It is known that 27.0 g of aluminum
contains 6.02x10?° atoms. How many aluminum atoms are contained in the

cube?

m = pV=(2.70 g/car’)(0.200 car’) = 0.540 g

0.540 g ijvsamplt‘
e 270 ¢ 6.02 X 10% atoms
" i _(0.540 g)(6.02 X 1023 atoms)
. sample ™ 97 () g

= 1.20 X 1022 atoms



1.4 Dimensional Analysis

Technique to check the correctness of an equation or
to assist in deriving an equation

Dimensions (length, mass, time, combinations) can be
treated as algebraic quantities

— add, subtract, multiply, divide
Both sides of equation must have the same dimensions

Any relationship can be correct only 1f the dimensions
on both sides of the equation are the same

Cannot give numerical factors: this 1s its limitation



Dimensional Analysis, example

« Given the equation: x = 5 at ?
 Check dimensions on each side:

L
L—/_?Z/-ZFZ/—L

e The T?’s cancel, leaving L for the
dimensions of each side

— The equation 1s dimensionally correct
— There are no dimensions for the constant



Dimensional analysis to
determine a power law

« Determine powers in a proportionality

— Example: find the exponents in the expression X oc 8"'t"
[(L”fm] — 1, = LlTO
(L/TQ)WTm — LITU
(L'}’ET'}}E“—‘Q'}’E) - LITO

n=1m— 2n =0

X oc at?

1 .2
X 2at



Example 3 Analysis of Power Law

Suppose we are told that the acceleration a of a particle moving with
uniform speed v in a circle of radius r is proportional to some power of r,

say ", and some power of v, say v™. Determine the values of n and m and
write the simplest form of an equation for the acceleration.

Solution
L. ( 1. )m Lﬂ;+m
— Tt —_—= L — =
a = kr'"v ‘ T2 T Tm
n+ m= 1 and m= 2
1.9 _ 02

a=kr "= k—



1.5 Conversion of Units

* Sometimes 1t 1s necessary to convert units from
one measurement system to another, or to convert
within a system, for example, from kilometers to

meters.
|l mile = 1609 m = 1.609 km ]l ft = 0.304 8 m = 30.48 cm

1l m= 39.37in. = 5.281 ft l in. = 0.0254 m = 2.54 cm (exactly)

2.54 cm
1 177

(15.0 irr.)( ) = 38.1 cm

o
Ot
==
[—
[—
et
|
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1.6 Estimates and Order-of-Magnitude
Calculations

* It 1s often useful to compute an approximate
answer to a given physical problem even
when little information 1s available.

—may need to modify assumptions 1f more
precise results are needed

* Order of magnitude 1s the power of 10 that
applies

0.0086 ~1072  0.0021~ 1072 720 ~ 10?



3,000 m =3 x 1,000 m

=3 x103m = 3 km
1,000,000,000 = 10° = 1G exa E
1,000,000 = 106 = 1M peta F
1,000 = 10% = 1k S —
| giga G
Mega M
141kg=7g x=3 kilo k
1 GB = ? Byte = ? MB hecto h
deca da



Some Prefixes for Powers of Ten

Power Prehx Abbreviation
1045 yocto y

1021 zepto Z

1018 atto a

10~15 femto f

10~ 12 pico P

1077 nano n

15" micro L

1073 milli m

1072 centi C

1071 deci d




Powers of 10 (Scientific Notation)

* It 1s common to express very large or very
small numbers using powers of 10 notation.

Examples
39,600 = 3.96 x 104

(moved decimal 4 places to left)
0.0021=2.1 x 10-°

(moved decimal 3 places to right)
PLEASE USE SCIENTIFIC NOTATION!



Example 1.5 Breaths in a Lifetime

Estimate the number of breaths taken during an average life
spar.

Solution

The number of minutes in a year 1s approximately

400 days ‘ Zo.n 60 min . &
1 vr : = 6 X 10° min
"\ 1lyr /J\l1lday I H,

Thus, in 70 years there will be
(70 yr)(6 X 10° min/yr) = 4 X 107 min.

At a rate of 10 breaths/min, an individual would take

4 X 10% breaths on the order of 10 breaths



Measurement Uncertainty;
Significant Figures

No measurement is exact; there 1s always some uncertainty due to
limited mstrument accuracy & difficulty reading results.

It 1s common to state this precision (when known).

The photograph to the
G S et illustrates this — it
- = "_ would be difficult to
' B measure the width of
this.




* Consider a simple measurement of the
width of a board. Find 23.2 cm.

 However, measurement 1s only accurate
to 0.1 cm (estimated).

—We write the width as
(23.2 £ 0.1) cm

+ 0.1 cm = Experimental uncertainty
* Percent Uncertainty:
+(0.1/23.2) x 100 = = 0.4%



Significant Figures
Significant Figures (“sig f1gs”) =
The number of significant figures is the

number of reliably known digits in a number.
It 1s usually possible to tell the number of significant
figures by the way the number 1s written:

23.21 cm has 4 significant figures
0.062 cm has 2 significant figures
(initial zeroes don’t count)

80 km 1s ambiguous:

it could have 1 or 2 significant figures.
If 1t has 3, 1t should be written 80.0 km.




 If we were to claim the area of a book 1s
(5.5 cm)(6.4 cm)=35.2 cm?, our answer
would be unjustifiable because 1t contains
three significant figures, which 1s greater
than the number of significant figures in
either of the measured quantities.



When multiplying or dividing numbers:

The number of sig figs in the result = the
same number of sig figs as the number used
in the calculation with the fewest sig figs.

When adding or subtracting numbers:
The answer iS no more accurate than

the least accurate number used.



Rounding

Last retained digit 1s increased by 1 if the last digit
dropped is greater than 5

Last retained digit remains as it 1s if the last digit
dropped is less than 5

If the last digit dropped is equal to 5, the retained digit
should be rounded to the nearest high even number

Saving rounding until the final result will help
eliminate accumulation of errors



 Example

—Area of a board:

dimensions 11.3 cm x 6.8 cm
—Area = (11.3) x (6.8) = 76.84 cm?
11.3 has 3 s1g figs , 6.8 has 2 si1g figs
— 76.84 has too many sig figs!
Proper number of sig figs in answer = 2
— Round off 76.84 and keep only 2 sig figs

= Reliable answer for area = 77 cm?

©http://www.phys.ttu.edu/~cmyles
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0.745x2 2 0.745x2 .2
=0.42187902 - =042
3.885 3.885

1.32578%10" x4.11x10™° = 5.4489558 x10*

{

1.32578x10" x4.11x10™ =5.45%10*



Summary

The three fundamental physical quantities of mechanics
are length, mass and time, which 1n the SI system have
the units meter (m), kilogram (kg) and second (s),
respectively.

The method of dimensional analysis 1s very powerful
for solving physics problems.

Units in physical equations should always be consistent.

When you compute a result from several measured
numbers, each of which has a certain accuracy, you
should give the result with the correct number of
significant figures.
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