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9.5 Guided Waves
9.5.1 Waveguides

The boundary conditions at the inner wall
are:                     / / 0 0  E and B 

Now lets deal with electromagnetic waves confined to the interior of a 
hollow pipe, or waveguide (not infinite extent in xy).

Waveguides generally made of good conductor, so that E=0 and 
B=0 inside the material.

The generic form of the monochromatic waves:



In the interior of the waveguide, the waves satisfy Maxwell’s
equations:
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Confined waves are not (in general) transverse; in order to fit the
boundary conditions we shall have to include longitudinal components
(Ez and Bz).
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Equations (ii), (iii), (v), and (vi) can be solved for Ex, Ey, Bx, and 
By. For example for Ex, use (iii) and (v).
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We'll wait for any accumulated free charge to disappear. From then
on, ρf= 0, and we have

It suffices, then, to determine the longitudinal components Ez and Bz. 
Inserting these equations into the Maxwell's equations (i) and (ii), it 
yields uncoupled equations for Ez and Bz.



Hollow, metallic waveguides are compatible with TE and TM
modes only. This is in contrast to coaxial cable where TEM mode
can propagate.



Question: Prove that TEM waves cannot occur in a hollow wave
guide.
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If Ez = 0, Gauss's law says,

If Bz = 0, Faraday's law says,
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In magnetostatics we have learned that magnetic flux lines always
close upon themselves. Magnetic fields are close loops and from
Amper law we know that if we have a magnetic field, there should
be a current in between which produces it. However, as there is no
current in the middle of waveguide, TEM cannot be supported in
such a one conductor structure. If we have a hollow waveguide
with a center conductor such as in a coaxial cable, however, TEM
waves are supported.



9.5.2 TE Waves in a Rectangular Waveguide
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0( , ) cos( / ) cos( / )zB x y B m x a n x b 

We conclude that the TEmn mode is:
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The first index is conventionally associated with the larger dimension, 
so we assume a>b.

The wave number is:
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When k is imaginary, instead of a traveling wave we have exponentially
attenuated fields. For this reason, ωmn is called the cut-off frequency.
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The wave number is imaginary if
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The lowest cutoff frequency for a given waveguide occurs for
the mode TE10

Frequencies less than this will not propagate at all.
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The wave number can be written more simply in terms of the cutoff
frequency:
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which is greater than c at and below cut-off frequency.



However, the energy carried by the wave travels at the group velocity:
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Consider an ordinary plane wave, traveling at an angle θ to the z axis,
reflecting perfectly off each conducting surface. In the x and y directions,
the (multiply reflected) waves interfere to form standing wave patterns.



Now, let us see how fields vary in TE mode.

-There is half sinusoidal variation along x direction and along y
direction there is no field variation. So, this will be TE10 mode.
-In the x direction, there are 2 half sinusoidal variations of the
field and in the y direction there is no variation of the field. So,
this is TE20 mode.
-In x direction there is no variation of the field and in y direction,
there is one half sinusoidal variation of the field. So, this is TE01

mode.
Reference:Prof. Girish Kumar’s lecture notes





A coaxial transmission line admits modes with Ez = 0 and Bz = 0.

9.5.3 The Coaxial Transmission Line
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From 2D Maxwell's equations
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The solution with cylindrical symmetry can be borrowed directly from 
the case of an infinite line charge and an infinite straight current:

Taking the real part:

Coaxial cables are also used in automobiles, aircraft, military and
medical equipment, as well as to connect satellite dishes, radio and
television antenna to their respective receivers.



The coaxial transmission lines


