
CHE/CEN138

COMPUTER
PROGRAMMING

BASIC NUMERICAL METHODS ALGORITHMS, BISECTION METHOD, GAUSS ELIMINATION, ODE SOLVING

1

1.Pratap, R. “Getting Started with MATLAB: A Quick Introduction for
Scientists and Engineers”Oxford University Press, 2010.
2.Hunt, B.R., Lipsman, L.R. and Rosemberg J. M. “A guide to MATLAB for
Beginners and ExperiencedUsers"Cambridge University Press, 2001.
3.Kubat, C. “MATLAB Yapay Zeka ve Mühendislik Uygulamaları” İkinci
Baskı, Pusula Yayıncılık, 2014McGraw Hill, International Edition 2012.

2

References

BISECTION METHOD

3

Explanation: In general, if f (x) is real and continuous in the interval from xl to xu and f (xL) and f (xU)
have opposite signs, that is,
f(xL) f(xU) < 0
then there is at least one real root between xl and xu.
Incremental search methods capitalize on this observation by locating an interval where the function
changes sign. Then the location of the sign change (and consequently, the root) is identified more
precisely by dividing the interval into a number of subintervals. Each of these subintervals is searched to
locate the sign change. The process is repeated and the root estimate refined by dividing the
subintervals into finer increments.
The bisection method, which is alternatively called binary chopping, interval halving, or Bolzano’s
method, is one type of incremental search method in which the interval is always divided in half. If a
function changes sign over an interval, the function value at the midpoint is evaluated. The location of
the root is then determined as lying at the midpoint of the subinterval within which the sign change
occurs. The process is repeated to obtain refined estimates. A simple algorithm for the bisection
calculation is given below.

BISECTION METHOD

4

BISECTION METHOD

5

xyz=input('Enter your function: ','s')
xl=input('Enter xl:')
xu=input('Enter xu:')
tol=input('Enter stopping criterion:')
kmax=input('Enter max iter:')
f=inline(xyz);
fid=fopen('bisection.txt','w');
fprintf(fid,'Roots of Equation f(x)=x^3-12*x^2+47*x-60 \n\n');
fprintf(fid,'iter xl xu xr f(xl) f(xu) f(xr) \n');
fprintf(fid,'---\n');
for i=1:kmax

ya=f(xl);
yb=f(xu);
xr=0.5*(xl+xu);
yr=f(xr);
fprintf(fid,'%4.1f %7.4f %7.4f %7.4f %7.4f %7.4f %7.4f\n',i,xl,xu,xr,ya,yb,yr);
if ya*yr<0

xu=xr;
else xl=xr;
end
if abs(yr)<tol;

break
end

end
fclose(fid);
disp('The root of the equation is')
xr

GAUSS ELIMINATION METHOD

6

Gaussian elimination, also known as row reduction, is an algorithm in linear algebra for solving
a system of linear equations. It is usually understood as a sequence of operations performed on the
corresponding matrix of coefficients. To perform row reduction on a matrix, one uses a sequence
of elementary row operations to modify the matrix until the lower left-hand corner of the matrix is
filled with zeros, as much as possible. Using these operations, a matrix can always be transformed into
an upper triangular matrix, and in fact one that is in row echelon form.The process of row reduction
makes use of elementary row operations, and can be divided into two parts. The first part (sometimes
called forward elimination) reduces a given system to row echelon form, from which one can tell whether
there are no solutions, a unique solution, or infinitely many solutions. The second part (sometimes
called back substitution) continues to use row operations until the solution is found; in other words, it
puts the matrix into reduced row echelon form.

GAUSS ELIMINATION METHOD

7

1

2

3

12 1 279.2
64 1 , ,

144
8 177.2

25 5 1 106.8

x
A X x B

x

     
          
         

𝐴𝐵 ൌ
144 12 1 279.2
64 8 1 177.2
25 5 1 106.8

64 8 1 177.2 െ
64

144 144 12 1 279.2

ൌ 0 2.6667 0.55555 53.1111

25 5 1 106.8 െ
25

144 144 12 1 279.2

ൌ 0 2.9167 0.8264 58.3278

𝐴𝐵 ൌ
144 12 1 279.2

0 2.6667 0.55555 53.1111
0 2.9167 0.8264 58.3278

GAUSS ELIMINATION METHOD

8

0 2.9167 0.8264 58.3278 െ
2.9167
2.6667 0 2.6667 0.55555 53.1111

ൌ 0 0 0.2188 0.2376

144 12 1
0 2.6667 0.55555
0 0 0.2188

൝
𝑥ଵ
𝑥ଶ
𝑥ଷ

ൡ ൌ ൝
 279.2

53.1111
0.2376

ൡ

0.2188𝑥ଷ ൌ 0.2376 → 𝑥ଷ ൌ 1.0859
2.6667𝑥ଶ ൅ 0.55555𝑥ଷ ൌ 53.1111 → 𝑥ଶ ൌ 19.6902
144𝑥ଵ ൅ 12𝑥ଶ ൅ 𝑥ଷ ൌ 279.2 → 𝑥ଵ ൌ 0.2905

GAUSS ELIMINATION METHOD

9

x=zeros(3,1);
AB=[A B]
n=size(A,1);
for i=1:n-1

P=-(AB(i+1:end,i)/AB(i,i))
AB(i+1:end,i:end)=AB(i+1:end,i:end)+P*AB(i,i:end)

end
for i=n:-1:1

x(i,:)=(AB(i,n+1:end)-AB(i,i+1:n)*x(i+1:n,:))/AB(i,i)
end

ODE SOLVING

10

- Solve the following ordinary differential equation
using MATLAB’s Ordinary Differential Equation
(ODE) solver with the initial condition of x(0) = 0
for a time span between 0 and 2.

𝑑𝑥
𝑑𝑡 ൌ 𝑥 ൅ 𝑡

function dxdt=difdenk(t,x)
dxdt=x+t;

[t,x]=ode23(‘difdenk’,[0 2],0)
plot(t,x)
xlabel(‘t’)
ylabel(‘x’)

ODE SOLVING

11

t =

0
0.0250
0.0500
0.0810
0.1234
0.1791
0.2496
0.3363
0.4400
0.5615
0.7009
0.8579
1.0319
1.2221
1.4221
1.6221
1.8221
2.0000

x =

0
0.0003
0.0013
0.0034
0.0079
0.0170
0.0339
0.0634
0.1127
0.1918
0.3146
0.5002
0.7743
1.1716
1.7228
2.4402
3.3606
4.3865

