EEE328 Digital Signal Processing

Ankara University

Faculty of Engineering

Electrical and Electronics Engineering Department

Sampling of Continuous-Time Signals

EEE328 Digital Signal Processing Lecture 9

Agenda

- Sampling
- Continuous-Time to Discrete-Time (C/D) Converter

Periodic Sampling

$$x[n] = x_c(nT), \quad -\infty < n < \infty$$
 T : sampling period

Ideal Continuous-Time to Discrete-Time (C/D) Converter

Sampling with Periodic Impulse Train

$$s(t) = \sum_{n = -\infty}^{\infty} \delta(t - nT)$$

$$x_s(t) = x_c(t)s(t) = x_c(t)\sum_{n=-\infty}^{\infty} \delta(t - nT)$$

$$x_s(t) = \sum_{n=-\infty}^{\infty} x_c(nT)\delta(t - nT)$$

$$S(j\Omega) = \frac{2\pi}{T} \sum_{k=-\infty}^{\infty} \delta(\Omega - k\Omega_s)$$

$$X_{S}(j\Omega) = \frac{1}{2\pi} X_{C}(j\Omega) * S(j\Omega)$$

$$X_{S}(j\Omega) = \frac{1}{T} \sum_{k=-\infty}^{\infty} X_{C}(j(\Omega - k\Omega_{S}))$$

$$\Omega_S - \Omega_N > \Omega_N$$

$$\Omega_s > 2\Omega_N$$
 Aliasing

References

- Signals & Systems, Second Edition, A. V. Oppenheim, A. S. Willsky with S. H. Nawab, Prentice Hall, 1997
- Discrete-Time Signal Processing, Second Edition, A. V. Oppenheim, R. W. Schafer with J. R. Buck, Prentice Hall, 1999