BME449 Tissue Engineering

Lecture #1 Tissue Engineering: Introduction

Doç. Dr. Pınar Yılgör Huri phuri@ankara.edu.tr

Ankara University
Department of Biomedical Engineering

Milestones in Tissue Engineering

- Animal and clinical work on Skin transplantation: Freidrich Dieffenbach (1792-1847)
- First successful autologous skin transplantation: Heinrich Christian Bünger
- ➤ relation between tissue regeneration and cellular proliferation: Rudolf Virchow (1821-1902)
- ➤ Active growth cells in culture: R. G. Harrison
- riangleright generate new cartilage using chondrocytes seeded onto spicules of bone (in early 1970s)
- rowth of dermal fibroblasts: Burke and Yannas (1982)
- ➤ The term "tissue engineering" was introduced in medicine (1987)
- ➤ Definition of Tissue engineering by Vacanti and Langer (Science, 1993)

Definition of Tissue Engineering

"an interdisciplinary field that applies the principles of engineering and life sciences toward the development of biological substitutes that restore, maintain, or improve tissue function or a whole organ."

> Langer, R & Vacanti JP Science 260, 920-6; 1993

Why Do We Need Tissue Engineering?

- Failing tissues and organs
- Shortfalls of current options
 - Autologous grafts
 - Allogenic grafts
 - Xenogenic grafts

Autografts

Tissue from the same patient

Advantages:

- Biocompatible
- No immune response
- Natural

Disadvantages:

- Secondary surgical operation
- Increased general anestesia
- Donor site morbidity
- Donor limitation

Allografts

Tissue from another person

Advantages:

More practical than autologous harvest

Disadvantages:

- Severe shortage of donors
- Increased immune response to foreign material
- Immunosuppressives

Xenografts

Tissue harvested from animals

Advantages:

Potentially readily available

Disadvantages:

- Immune response from host to foreign material
- Risk of disease transmission from animal to human
- Significant ethical considerations