Applications of Gauss’s Law

Example 3. Find the field outside a uniformly charged solid sphere of radius R and

total charge g.
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The magnitude of E is constant over the Gaussian surface;
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Symmetry is crucial at application of Gauss’s law. There are three kinds of symmetry:

1. Spherical symmetry. Make your Gaussian surface a concentric sphere.

2. Cylindrical symmetry. Make your Gaussian surface a coaxial cylinder.

Gaussian surface

3. Plane symmetry. Use a Gaussian “pillbox” that straddles the surface.
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Cylindrical Coordinates
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express the cylindrical variables in terms of X, y, and z:
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A differential volume element in cylindrical coordinates may be obtained by increasing
p, ¢, and z by the differential increments dp, dop, and dz.

Note that dp and dz are dimensionally lengths:
but do is not; pdep is the length.
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Example 4. A long cylinder carries a charge density that is proportional to the distance from
the axis: p = ks, for some constant k. Find the electric field inside this cylinder.

Draw a Gaussian cylinder of length | and radius s;
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(integrated ¢ from 0 to 2z, dz from O to .
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(E must point radially outward, so for the curved portion of the Gaussian cylinder adds up,
while the two ends contribute nothing - here E is perpendicular to da.)
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Example 5. An infinite plane carries a uniform surface charge o. Find its electric field.

Gaussian pillbox,” extending equal distances above and below the plane;
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n is a unit vector pointing away from the surface.



Example 6. Two infinite parallel planes carry equal but opposite uniform charge densities +o.
Find the field in each of the three regions: (i) to the left of both, (ii) between them, (iii) to the
right of both.

Figure 23 - 24

The field between the plates is o/¢,, and points to the right; elsewhere it is zero.
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