The Curl
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Geometrical Interpretation: V x v is a measure of how much the vector v swirls around the
point in question.
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The Curl of E

The E field of a point charge at the origin:

X
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E(r) =

v

the curl of this field is zero

VXE=0

The line integral of a field from a point a to point b:

b
f E - dl
a

r, ; the distance from the origin to the point a
r, ; the distance to b.
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In spherical coordinates;
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Therefore;
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Result: The line integral only depends on the coordinates of the endpoints; that
IS, independent of the path.

The integral around a closed path r, =r,:
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Stokes’ theorem:

f(? X V)-da= 56 v - dl
S P

Applying Stokes’ theorem;
§£E-dl=0 ) VXE=0
(hold for any static charge distribution whatever.)

For many charges, using the principle of superposition;

E=E +E,+...

VXE=VxE +E+..)=(VXxE)+(VxE)+...=0



ELECTRIC POTENTIAL
Any vector whose curl is zero is equal to the gradient of some scalar.

VXF=0&F=-VV

Theorem:

Curl-less (or “irrotational”) fields. The following conditions are equivalent
(that is, F satisfies one if and only if it satisfies all the others):

(a) V x F = 0 everywhere.
(b) ]qh F - dl is independent of path, for any given end points.
(c) ¢ F-dl =0 for any closed loop.

(d) F is the gradient of some scalar function: F = —VV.,



Because the line integral is independent of path, we can define a function:

V(r}z—/ E . dl
¢
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() : standard reference point. It is called the electric potential.
The potential difference between two points a and b is
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The fundamental theorem for gradients states that o /,, (VV)-dl =~ [, £-dl
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V(b) — V(a) = (VV).dl _—
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E=-VV



Example 7. Find the potential inside and outside a spherical shell of radius R that carries a
uniform surface charge. Set the reference point at infinity.

Using Gauss’s law, the field outside is

Figure 31 E=_ 3
4 eq r?

The field inside the shell is zero.

For points outside the sphere (r > R),

r _l r q ) l (1 r
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The potential inside the sphere (r < R),
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Vir) = —dr’ — (0)ydr = —
drey Joo 12 R deq 1’

The potential is not zero inside the shell, even though the field is.
V is a constant in this region, to be sure, so that VV = O0—that’s what matters. .,
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Poisson’s Equation and Laplace’s Equation
The electric field written as the gradient of a scalar potential;

E=-VV

What do the divergence and curl of E, look like, in terms of V?

v.E=L VXxE=0
€0
- — i
V-E=V.(-VV)=-V°V
V2V = —Eﬁ mmmm)  Poisson’s equation
0

In regions where there is no charge, so p =0,

VV =0 Laplace’s equation

The curl of E;
— —
VXE=V x(-=VV)=0



The Potential of a Localized Charge Distribution

The electric field of a point charge at the origin:
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E(r) = —r
dmeg r-
q
In spherical coordinates;
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Setting the reference point at infinity, the potential of a point charge g at the origin is;
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777 Figure 32
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collection of charges; continuous distribution

point charge

qi
l 4% e ®
V)= — 9 l' 1
dren 2 V(r) — I &g V(r) = 1 f—dq
dmey (o 2i € J

For a volume charge

1 p(x) .,
The potentials of line and surface charges: — {mm— Vi) = 4 e f 2 at

] AX') | o)
V = dl V = da
dreg ) 4 €p A
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Example 8. Find the potential of a uniformly charged spherical shell of radius R.

]
V(r) = [ 2 da

4w eq 2

Figure 33

using the law of cosines to:

: i da’ = R?sin 0'de" d¢’
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A

27 R
drepV(z) = HH ? [«J(R +2)? = V(R - :]3] .
For points outside the sphere, z is greater than R = /(R — 7)2 =7 — R

For points inside the sphere = /(R —7)2 = R — 7

. Ro R0
outside the sphere; Vi) =—[(R+2)—(z—R)] = —
2€p2 €02

inside the sphere; Vv (z) = Ro [(R+27)—(R—=2)]= Ra
2€p2 €0

In terms of r and the total charge on the shell, g = 4z R0,

|
1 (r = R),
deq r
V(r) = 1
|
— (r < R).
| dmeg R
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The three fundamental quantities of electrostatics: p, E, and V :

Figure 35
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