MULTIPOLE EXPANSION

Approximate Potentials at Large Distances

Example. A (physical) electric dipole consists of two equal and opposite charges (+Qq)
separated by a distance d. Find the approximate potential at points far from the dipole.
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From the law of cosines;
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Then, binomial expansion yields

11 1 -2 i | | d
—E—(IZF(—COSH) —(l:l:(—co%)) ‘ ———sz—,}CDSH
- r .{ | e

24 I 2r



cos f V(r) =

| (q q)
dweyg \ 2o  2_

. 1 gdcosf
V(l‘} =

4reqg  r?

If we put together a pair of equal and opposite dipoles to make a quadrupole, 1/r3;
for back-to-back quadrupoles (an octopole), it goes like 1/r%
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To develop a systematic expansion for the potential of any localized charge distribution,
the potential at r is given by
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Using the law of cosines,
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where o is the angle between r and r’. Then,
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for r > r', cismuch less than 1, and this invites a binomial expansion:
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Substitute €,

Re-arrange for like powers of (r'/7);
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The first term is the monopole contribution (it goes like 1/r); the second (n = 1) is the
dipole (it goes like 1/r?); ...



Like powers of (r'/r) coefficients (the terms in parentheses) are Legendre polynomials!
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(the multipole expansion of V in powers of 1/r .)
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The Monopole and Dipole Terms

Ordinarily, the multipole expansion is dominated (at large r ) by the monopole term:
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If the total charge is zero, the dominant term in the potential will be the dipole:
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(translates in the usual way for
point, line, and surface chafges.)



The dipole moment of a collection of point charges:
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E.g.: For a physical dipole (equal and opposite charges, +q);

p=gqr, —qr_=q, —r_)=qd
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The Electric Field of a Dipole

Let p is at the origin and points in the z direction R
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Gradient in spherical coordinates:
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(Notice that the dipole field falls off as
the inverse cube cf r)



